Replacement Transmitter System for USCG Loran Recapitalization

Erik Johannessen Megapulse, Inc

Andrei Grebnev Megapulse, Inc

Terry Yetsko BCO, Inc

Presented at ILA30 – St. Germain-en-Laye

Requirements and Understanding

- USCG issues Performance Specification
 - Meet and exceed COMDTINST M16562
 - Controlling factors
 - Remote operability
 - Future requirements
 - Reduced operational cost
- Megapulse understands this to mean
 - TTX not supportable in the near term (NSITNT)
 - SSX control circuits NSITLT
 - TTX/SSX don't support additional capabilities
 - Less bodies = Less \$

General Design Strategy

Goal:

- The Megapulse technical response shall describe a replacement transmitter based on the following design goals:
 - Further increase individual HCG output power through improved components
 - Modernize Control Console assembly
 - Make the number of DHC's variable and assignments flexible
 - Future incorporation of IFM should have minimal impact on proposed architecture
 - Maximize commonality with exiting USCG assemblies

General Design Block Diagram

MP3611-A.VSD

Modernizations AN/FPN-64, A6500

- Increased Output Power/Higher Efficiency
 - Demonstrated in A6500
 - Modern components available with higher ratings open possibility further

Modernization AN/FPN-64, A6500

- Increasing Flexibility of DHCs
 - Original SSX prototype used 10 DHCs
 - Timing & amplitude was controlled by a PDP-11
- Idea was Revisited During "Dual Pulse" Tests
 - A 52 μsec time to peak Chayka pulse was generated using 4 DHCs
 - A 65μsec TTP Loran pulse was generated with 6 DHCs
 - Results published at Bonn DGON conf. Mar 2000
- DHCs that are Flexible and Reassigneable
 - ECD control will be more robust
 - Enhanced fail soft of HCG's
 - Allows for control of TTP

- Tests and Simulations were Performed to Verify Proposed Modernizations
 - Identify impact of increased voltages and currents (due to doubling the output power) on HCG components;
 - Ensure that Loran signal parameters (e.g. ECD, Tail Attenuation, etc) can be met with reduced number of HCG's.

High Power Test

• Schematic of Experimental Test Setup

Experimental Test Setup

Experimental Test Setup (cont.)

• HCG Current into Coupling Network

Implications to Design of HCG

(identified by shaded areas below)

- IsSpice4 Software was used for Simulations
- 16 HCG Transmitter with 625ft TLM Antenna was Modeled
- Actual Cape Race Transmitter (32 HCG) Test
 Data was used as Reference to Validate
 Simulation Results
- Simulations Included:
 - Generations of Loran signals with full range of ECD's;
 - Verification of signal's tail attenuation (0.014A @ t>500sec);
 - Signal's spectrum compliance to specification

• Simulation Schematic (16 HCG-625ft TLM)

- V1 100kHz Sinewave Generator
- V2 V5 Generate 5µsec wide pulses at 5µsec intervals
- **B1 DHC** Generator = V1*V2+V1*V3+V1*V4+V1*V5;
- B2 Loran-C Signal Generator (per COMDTINST M16562.4A specification)

• Simulation Generated Loran Signal

• Generated Loran signal spectrum

ECD =
$$+5\mu$$
sec
 $2-2-6-6$
 $(2.2-2.1-6.1-6)$

$$(E_{SCR})_{MAX} = 1650v$$

$$(E_{C1})_{MAX} = 1100v$$

$$(I_A)_{MAX} = 665A$$

ECD =
$$+2.5\mu$$
sec
 $4-4-4-4$
 $(4.2-4.1-4.03-4.03)$

$$(E_{SCR})_{MAX} = 1600v$$

$$(E_{C1})_{MAX} = 1100v$$

$$(I_{A})_{MAX} = 665A$$

Simulation Results

- Full range of Loran signal ECD's was generated. ECD "truth" table can be used as a reference in the design of Transmitter Control Assembly (TCA)
- The same model will be used to generate HCG reassignment table for TCA, which will be used in case of HCG failure (soft fail concept)
- Different values of Tailbiter components were analyzed with respect to tail attenuation requirements

TCS Design Philosophy

- Retain Existing System Partitioning
 - GFE Loran Timer and Remote Control
 - Control Console, XMTR and Power Distribution
- Retain Existing Functionality
 - Replace TOPCO, PATCO, SDA and Display Units
 - Auto "Fail-Over"/Redundancy
- Incorporate New Functionality
 - Support for Additional Drive Half Cycles
 - Dynamic Re-Assignment of HCGs
 - Real-Time Loran Signal Quality Analysis (SQA)
 - Interpulse Modulation (Supernumerary)
- Allow for Future Capabilities
 - Intrapulse Frequency Modulation (IFM)

Functional Decomposition - Summary

TCS Design Approach

- Redundant Design
- Commercial Off-The-Shelf (COTS) to Reduce Schedule/Technical Risk
- Card Based CPU for Reliability/Maintainability
- Hardware Independent C/C++ Software
- Graphics Display, Keyboard and Pointing Device Support
- Rear Panel Signal I/O with MS Style Connectors
- 19" Rack Mounting with Forced Air Cooling

TCS Block Diagram

Transmitter Control Subsystem

TCA Block Diagram

TCA - VME Chassis

User Interface Menu Tree

HCG Alarm/Status Screen

Station Control Screen

HCG/SDSC Methodology

- HCG Control Methodology
 - Current System Design Analyzed
 - Similar Approach for Control of HCGs Chosen
 - Reduce development
 - Minimize risk
 - Improve maintainability
 - Timing Analyzed for Support of:
 - Utilization of Additional Half Cycles to Improve Transmitter Efficiency

HCG Control Similar to Existing System Control Methodology

HCG/SDSC Functions

• Main HCG/SDSC Functions are as Follows:

- Failsafe Blanking
- Timing and Triggering for the TCA Based on USCG Timer Signals
- Polarity Control for Loran Pulse Phase Coding Based on USCG Set and Reset Pulses
- High Speed Sampling of HCG Feedback
 - Adjust HCG Amplitude and Trigger Timing Based on Feedback Analysis
- Generate Four (4) Serial Data Streams, One for Each Group of HCGs
- Allocate HCGs to Required Drive Cycle Based on Programmed System Settings
- Generate Transmitter Tailbiter Triggers
- Future Generation of FSS (Frequency Shift Switches) Control Signals for IFM Based on Coast Guard Control

HCG/Serial Controller Software

Functions Performed

- Initializes MTS Data, Tailbiter Trigger and Frequency Shift Switch Control Signal Data Buffers
- Monitors DHC Feedback Signal from DAQ HW Module
- Computes DHC Magnitude and Zero Crossing Values
- Based on These Computed Values, Adjusts MTS Amplitude and Delay Values as Required
- Loops Once per LORAN Pulse
- Provides All Data for Use by Main Processor
- Performs Self Health Monitoring
- Inhibits Signal Outputs if in Backup Mode

Signal Quality Analyzer (SQA) Group

• The SQA Group Consists of the Following:

- One (1) Processor Card [MVME5100-013]
- One (1) 65 Mhz DAQ (Data Acquisition) PMC Card [ICS-550]
- Main SQA Functions are as follows:
 - High Speed Sampling of Antenna Feedback
 - Adjust Antenna Tuning Based on Feedback Analysis
 - The Functional Capability of the PC-LORDAC Test capability includes both Signal Specification tests and Engineering Specification tests
 - Future Analysis of Output Waveform for Intrapulse Frequency

Summary

- Cost Effective
- Higher Efficiency
- Managed Risk
- Flexible Control Architecture
- Familiar Assemblies
- Enhanced Maintainability and Operability

