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ABSTRACT
This paper describes an all-in-view weighted least squares estimation of a Loran receiver�s horizontal 
position and time bias, with simultaneous (on-the-fly) estimation of additional secondary factor (ASF) 
errors along the receiver-to-transmitter paths.  In this context, the ASF error parameter along a receiver-to-
Secondary path absorbs both ASF errors along the receiver-to-Secondary path as well as emission delay 
(ED) modeling errors arising from ASF errors along the SAM-to-Secondary and SAM-to-Master paths.  
The estimation is based on time-of-arrival (TOA) measurements and their error covariances, a priori ASFs 
and their error covariances, and potentially a priori position and time updates from an external source and 
their error covariances. 
 
For utilizing ASF error calibrations along given paths, an extended form of the usual least squares 
technique, called least squares collocation, is described for predicting ASF errors at the receiver location 
based on calibrated ASF errors along arbitrary paths. The calibrated ASFs may come from a previous 
solution with external position/time update, or in the future may come from a set of ASFs broadcast from a 
regularly updated calibration. 
 
The required a priori ASF error covariance model is expressed as double path integrals of a postulated 
homogeneous (location independent) and isotropic (azimuth independent) covariance function describing 
the spatial distribution of phase velocity errors in the operating area. The assumed phase velocity error 
covariance function is a function of the distance separation between the points being correlated and 
parameterized by the variance, which is the value at zero separation, and the correlation length, which is the 
separation at which the covariance drops to half the variance. 
 
1.  Introduction 
 
Illgen Simulation Technologies, Inc. (ISTI) is 
developing an all-in-view Loran-C position 
algorithm suitable for use in a weighted combined 
Global Positioning System (GPS)/Loran-C 
navigation system.  The goal of the program 
sponsoring this work is to show that the Loran-C 
component of a hybrid system can meet the 
requirements for horizontal navigation and 
approach procedures during loss of the GPS signal.  
This paper focuses on a part of the algorithm 
system described in [1], namely, the modeling of a 
priori ASF/ED errors and their treatment in the 
navigation estimation. 
 
The paper is organized as follows. Section 2 
presents the least squares equations used in the 
covariance analysis of an all-in-view Loran-C 
navigation with simultaneous (i.e., on-the-fly or 
OTF) calibration of ASF/ED errors.  Section 3 
proposes a covariance model for phase velocity 
errors.  Section 4 describes the ASF/ED error 
covariance model implied by the postulated phase 

velocity error covariance model. Section 5 
introduces least squares collocation for predicting 
ASF/ED errors at the user location based on 
calibrated ASF/ED errors along arbitrary paths.  
Section 6 gives the covariance equations for 
analyzing navigation errors implied by various 
treatments of ASF/ED errors in the estimation.  
Section 7 gives the verification and validation tests 
performed on the OTF ASF calibration technique.  
Finally, Section 8 gives the summary and 
recommendations. 
 
2.  Least Squares Estimation Equations 
 
Start with the following non-linear observation 
model with two groups of parameters and three 
groups of observations at an epoch: 
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F � Known vector function 
XAa � True vector of group-A parameters, 
containing the user�s East, North, and Clock Bias 
parameters 
XBa � True vector of group-B parameters, 
containing the additional secondary factors (ASFs) 
along the receiver-to-transmitter paths 
L1a � True vector of group-1 observations, 
containing the Loran Time-of-arrival (TOA) 
observations 
L0a � True vector of group-0 observations, 
containing assumed direct observations of the 
parameters XAa 
L2a � True vector of group-2 observations, 
containing assumed direct observations of the 
parameters XBa. 
 
The linearized observation equation system 
becomes: 
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 �Observation vector 
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          I   � Identity matrix. 
 
The observation partials are defined as: 
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The linearized observation equation system can be 
written as: 
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with the following definitions: 
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We have the null hypothesis: 
 

(2-7) →
















2

0

1

0  : H
L
L
L

 

         

























































−

−

−

1
2

1
0

1
1

2
0

00
00
00

 , 0
0

 N
W

W
W

X
X

I

B
I
A

B

A σ  

 
That is, the (observed � computed) vector has a 
multi-dimensional Normal distribution with 
expectation given by the first argument, and 
dispersion given by the second argument in (2-7), 
where: 
 
W0 � Weight matrix of the group-0 observations 
W1 � Weight matrix of the group-1 observations 
W2� Weight matrix of the group-2 observations 

0σ � A priori reference standard deviation  
           (usually set to 1). 
 
Estimate XA and XB using the Least Squares 
criterion: 
 
(2-8) ++       111000 VWVVWV TT  

                                minimum     222 →VWV T  
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This leads to the normal equation system for the 
parameter estimates AX�  and BX� : 
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Introduce a shorthand notation for the individual 
elements by writing the normal equation system as: 
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Eliminating the group-A parameters from the 
second equation in the system: 
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where we have the reduced normal sub-matrices: 
 
(2-12) ABAA

T
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(2-13) AAA
T
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Back-substitution in (2-11) gives the parameter 
estimates: 
 
(2-14) BBBB UNX ~~� 1−=  

(2-15) BABAAAAAA XNNUNX �� 11 −− −= . 
 
The cofactor matrices of the group-A and group-B 
parameters, which when multiplied by the 
reference standard deviation 0σ  give the error 
covariance matrices of these parameters, are 
derived by error propagation through (2-14) and 
(2-15). The cofactor matrices are also known to be 
the elements of the inverse of the coefficient matrix 
in (2-10).  The resulting group-A and group-B 
cofactor matrices are: 
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Equations (2-14) to (2-18) form the desired set of 
equations for navigation with OTF ASF 

calibration.  For visualizing the mutual dependence 
between the group-A and group-B parameters and 
the relative weighting of the observation groups, it 
is instructive to write (2-14) and (2-15) in the 
equivalent form: 
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The above equivalencies are established using the 
matrix identity: 
 
(2-25) ( ) +≡− −−− 1

22
1

12
1

112122 MMMMM  

                  ( ) 1
2212

1
21

1
22121121

1
22

−−−− − MMMMMMMM . 
 
As an example of the interpretation of the 
equivalent equations, the form (2-20) shows that 
the OTF ASF system can be interpreted as using 
post-adjustment values of ASFs to obtain the 
position estimates.  The form (2-22) shows that the 
system is equivalent to accounting for the a priori 
uncertainties in ASFs in the observation weighting. 
 
Two special cases of (2-14) to (2-18) are of 
interest: 
• If there is no external position and time update 

being used, then W0 = 0 in (2-9) and the 
equations still hold. 

• If the a priori ASFs are not being adjusted but 
simply used as constants, then conceptually W2 
is infinite in (2-9) resulting in 2

� LX B =  being 

used in (2-15) and 1
2��
−= WQ

BB XX  being used in 

(2-17).  The 2
� LX B =  means +≡ 0

�
BBa XX   

BX�  = bB LLX 220 ≡+ , i.e., the a posteriori 
ASFs are the same as the a priori values, and 
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1
2��
−= WQ

BB XX  means that the a posteriori ASF 

errors are the same as the a priori ones, as 
expected in this special case. 

 
3.  Phase Velocity Error Covariance Model 
 
In [2] Section 4.4 ASF Variations, the scale factor 
w is defined as the reciprocal of the phase velocity 
v, so that the scale factor error is: 
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where v∆  is the phase velocity error. 
 
The model in [2] uses as input the scale factor 
error variance, which we denote by 0,wC∆ , with 
default value: 
 
(3-2) mmicrosec/k 10 x 6.3 -4

0, =∆wC  

                           m/km 0.108 = . 
 
It is assumed in [2] that the scale factor error is 
perfectly correlated between any two points in the 
operating area.  Here, we propose to model the 
error covariance as a function of the distance 
between the two points being correlated, in the 
form: 
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where: 
 

( )QPC w ,∆ � Scale factor error covariance 
between points P and Q 
dPQ    � Distance between points P and Q 
ξ       � Scale factor error correlation length 

0,wC∆  � Scale factor error variance. 
 
It is assumed that the error covariance is 
homogeneous (location independent) and isotropic 
(azimuth independent) throughout the operating 
area. The two parameters defining the postulated 
covariance function (3-3) are the variance, which is 
the value at zero distance, and the correlation 
length, which is the distance at which the 
covariance drops to half the variance.  Figure 1 
plots (3-3) using the default variance (3-2) and 
sample correlation lengths 750, 500, and 200 km. 

The form (3-3) may be referred to as the reciprocal 
distance covariance form. Other forms may be 
used to represent the covariance, the only 
requirement ([3] Section 22) being to use a 
positive definite function.  Positive definiteness of 
a function is equivalent to non-negativity of the 
spectrum. The spectrum, or Hankel Transform, of 
(3-3) is given by: 
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This spectrum is positive for η >0, so the function 

( )dC w∆  is positive definite.  It follows that every 
covariance matrix derived from (3-3) is also 
positive definite.  Positive definiteness is a 
requirement for regular covariance matrices.  By 
definition, a square matrix M is positive definite if 
([3], 9-26): 
 
(3-5) 0  ≥TxMx  
 
for an arbitrary row vector x, with the equality sign 
holding only if x = 0. 
 
4.  ASF Error Covariance Model 
 
The ASF error covariance model is computed from 
the scale factor error covariance model (3-3) by 
covariance propagation through the functional 
relationship between these two quantities. The 
functional relationship is an integral of the basic 
relationship given in [2] Section 4.4.  For paths to 
a Secondary station, the ASF error covariance 
model accounts for the system area monitor (SAM) 
control function. 
 
4.1 ASF Error Covariance Between Two User-
to-Master paths 
 
The ASF error resulting from scale factor errors 
along the path from user u1 to Master station m1 is 
expressed as: 
 

(4-1) ∫ ∆=∆ 11

0 1111  muS
mumu dswASF  

 
where the integration is along the path, with total 
length Su1m1 and line element dsu1m1. 
 
The ASF error covariance between two arbitrary 
user-to-Master paths, u1m1 and u2m2, is computed 
by covariance propagation through (4-1): 
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(4-2) ( ) =∆ 22,11 mumuC ASF     
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where the integrations of the scale factor error 
covariance function are carried out along the paths 
u1m1 and u2m2, with total lengths Su1m1 and Su2m2, 
and line elements dsu1m1 and dsu2m2, respectively. 
 
The ASF error variance of a user-to-Master path is 
found by evaluating (4-2) for u1 = u2 and m1 = 
m2.  The ASF error variance computed using (3-3) 
and (4-2) can be expressed in closed form as a 
function of path length ([5]): 
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where S is the length of the path. 
 
Figure 2 plots the square-root of the result from (4-
3), for path lengths from 0 to 3000 km, scale error 
variance 0,wC∆  from (3-2), and sample correlation 
lengths of ξ  = 200 km, 500 km, and ξ  >> S.  The 
case when ξ  is very much larger than the length of 
the path has the approximation: 
 
(4-4) SSCC wASF >>≈ ∆∆ ξ  , 0,0, . 
 
4.2 ASF Error Covariance Between Two User-
to-Secondary paths 
 
The ASF error along the path from user to 
Secondary station is defined here to include all 
ASF-related errors causing Time-of-arrival (TOA) 
modeling error along the path.  This ASF error has 
two components: 
• ASF error resulting from scale factor errors 

along the user-to-Secondary path 
• ASF error resulting from scale factor errors 

along the SAM-to-Secondary and SAM-to-
Master paths.  These scale factor errors affect 
the modeling of the emission delay (ED) and 
consequently the TOA modeling along the 
user-to-Secondary path. 

 

The ASF error along the path from user u1 to 
Secondary s1, given that the SAM is sam1 and the 
Master is m1, is expressed as: 
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where the integrations are along the indicated 
paths. 
 
The ASF error covariance between two arbitrary 
user-to-Secondary paths, u1s1 and u2s2, is 
computed by covariance propagation through (4-
5): 
 
(4-6) ( ) =∆ 22,11 susuC ASF  
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where the SAM sam2 is controlling the secondary 
s2 with respect to the master m2. 
 
4.3 ASF Error Covariance Between a User-to-
Master and a User-to-Secondary Path 
 
The ASF error covariance between a user-to-
Master path, u1m1, and a user-to-Secondary path, 
u2s2, is computed by covariance propagation 
through the functional relationships of types (4-1) 
and (4-5): 
 
(4-7) ( ) =∆ 22,11 sumuC ASF  

                     −∫ ∫ ∆ 22110 0

22 11
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                     +∫ ∫ ∆ 22110 0
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4.4 Differential ASF (DASF) Error Covariance 
Model 
 
In hybrid operations, in which external position 
updates are used to control ASF-caused 
positioning bias, it is of interest to compute the 
statistical difference in ASF error between the 
current epoch of a moving receiver and the epoch 
of the last position update.  The size of this 
differential ASF (DASF) error dictates the position 
error growth between external updates.  It is seen 
from (4-1) and (4-5) that the DASF error between 
the paths from two receivers u1 and u2 to a single 
transmitter t1 is independent of whether t1 is a 
Master or a Secondary, since the terms in (4-5) 
involving the SAM cancel out in the difference.  
The DASF error for the triplet (u1, u2, t1) is 
expressed as: 
 
(4-8) 1112121 tututuu ASFASFDASF ∆−∆≡∆  

                           ∫∫ ∆−∆= 1112

0 110 12   tutu S
tu

S
tu dswdsw . 

 
The DASF error covariance between two arbitrary 
triplets (u1, u2, t1) and (u1, u2, t2) is computed by 
covariance propagation through (4-8): 
 
(4-9) ( ) =∆ 221,121 tuutuuC DASF  

                      −∫ ∫ ∆ 22120 0

22 12

tutu
S S

w dsdsCtu tu

 

 

                      −∫ ∫ ∆ 21120 0

21 12

tutu

S S

w dsdsCtu tu  

                      +∫ ∫ ∆ 22110 0

22 11

tutu

S S

w dsdsCtu tu  

                      21110 0

21 11

tutu

S S

w dsdsCtu tu

∫ ∫ ∆ . 

 
5.  Predicted ASF (PASF) Computation and 
Error Covariance Model 
 
Error analysis using (4-9) is based on the 
conventional differential positioning concept, 
which relies on the assumption that the ASF errors 
at the current receiver location are approximately 
equal to those at the location of the last position 
update.  It is proposed here to improve the 
differential concept by predicting the ASF error 
(instead of simply assuming equality) based on the 
estimated ASF errors at the last update.  As the 
prediction algorithm, we choose the one based on 

the criterion of minimum prediction error variance 
([3] Section 9).  In this technique, the ASF errors 
along the paths from receiver u2 to an arbitrary 
transmitter tp is predicted from the estimated ASF 
errors along the paths from reference receiver u1 to 
transmitters t1, t2, �, tn.  The technique is termed 
least squares collocation as explained in [3] 
Section 11. The following description follows [3] 
Sections 16 and 17. 
 
The linearized observation model is written as: 
 
(5-1) ntAXl ++=  
 
where: 
 
l  � TOA residual vector after linearization 
around the a priori receiver coordinates and ASFs 
A  � Known geometry matrix, expressing 
the effects of parameter corrections X on the 
residuals l 
X  � Parameter correction vector to be 
estimated, containing corrections to the a priori 
East, North, Time coordinates of the receiver 
AX  � �Systematic part� of l 
t  � �Signal part� of l, consisting of the 
ASF corrections to be estimated 
n  � �Noise part� of l, containing the TOA 
measurement errors. 
 
Along with the estimation of X and t we will 
predict a signal vector u, containing ASF 
corrections at an arbitrary user location and related 
to t by the signal covariances: 
 
(5-2) ( ) { }T

uu uuuuC  M,cov =≡  

(5-3) ( ) { }T
ut uttuC  M,cov =≡  

(5-4) ( ) { }T
tt ttttC  M,cov =≡  

 
where M{.}is the averaging operator. These ASF 
error covariances are derived from the fundamental 
covariance function (3-3) of scale factor error 
using the formulas in Section 4. 
 
The covariance matrix of TOA measurement errors 
is denoted: 
 
(5-5) { }T

nn nnC  E=  
 
where E{.} is the expectation operator. 
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It is assumed that the a priori parameter vector X0, 
used to generate the linearized model (5-1), has the 
following error covariance matrix: 
 
(5-6) { }TXXW 00

1
0   E δδ=−  

 
where the prefix δ  denotes the error in the 
prefixed quantity. 
 
The signal vectors t and u are combined into one 
signal vector s: 
 

(5-7) 







=

u
t

s  

 
with the following covariances: 
 

(5-8) 







=








=

ut

tt
st

ttut

tutt
ss C

C
C

CC
CC

C       ; .  

 
The minimization principle for least squares 
collocation is: 
 
(5-9) ++ −−       11 nCnsCs nn

T
ss

T  

                   minimum     0 →XWX T  
 
which is generalized from [3] (16-15) by including 
the a priori parameter weight W0. 
 
The resulting parameter estimates, along with their 
a posteriori error covariances, are given by: 
 
(5-10) lGX      � =  
(5-11) ( )XAlHs �     � −=  

(5-12) ( ) 1
0

1 −− += WACAE T
XX  

(5-13) TT
XXtsstssss HAHAECCCCE +−= −1  

 
where: 
(5-14) ( ) 11

0
1 −−− +≡ CAWACAG TT  

(5-15) 1−≡ CCH st  

(5-16) nntt CCC +≡ . 
 
In the application of this report the signal vector t, 
which forms part of s, contains the ASFs at the 
location of the position update. The accuracy of 
position update is reflected in the a priori weight 
matrix W0. The signal vector u, which forms the 
remaining part of s, contains the ASFs at an 

arbitrary location for which predicted ASFs are 
desired. 
 
6.  Navigation Errors Implied by ASF 
Calibration and TOA Measurement Errors 
 
The error covariance of estimated (East, North, 
Time) parameters can be expressed in the nominal 
form (see (2-17)): 
 
(6-1) ( ) +=

−1
1 AWAE T

ENT  

                ( ) ( ) 1
111

1
1   

−− AWAAWEWAAWA T
ASF

TT  
 
where W1 is the inverse of the TOA measurement 
error covariance matrix and ASFE  is the ASF 
error covariance matrix.  Here, the B matrix has 
been taken as an identity matrix under the 
assumption that the ASF parameters are ordered in 
the same way as the TOA observations. The first 
term of (6-1) accounts for the effects of TOA 
measurement errors, while the second term 
accounts for the effects of ASF calibration errors.  
For the verification runs and tests of this report, 
various cases of the ASF error covariance matrix 

ASFE  appearing in (6-1) were considered, as 
defined in the following sections. 
 
6.1 Navigation using a priori ASFs 
 
When using an a priori ASF model with no 
adjustment of the ASF values, the ASFE  to use in 
(6-1) is equal to the a priori ASF error covariance 
matrix as computed using (4-2), (4-6), and (4-7): 
 
(6-2) ASFASF CE ∆=)1( . 
 
6.2 Navigation using a posteriori ASFs with no 
position/time update  
 
When adjusting the a priori ASF values 
simultaneously with the navigation estimation, but 
without using any external position and time 
parameter information, the ASFE  to use in (6-1) is 
the a posteriori ASF error covariance matrix of the 
adjustment (see (2-16)): 
 
(6-3) =)2(ASFE  

                ( )[ ] 1 

1
1

11
1

1 
−−−

∆ −+ WAAWAAWCW TT
ASF . 

 



8 

6.3 Navigation using a posteriori ASFs with 
position/time update at the user location 
 
When adjusting the a priori ASF values 
simultaneously with the navigation estimation, and 
using external position and time parameter 
information as represented in the a priori weight 
matrix W0, ASFE  is the a posteriori ASF error 
covariance matrix of the adjustment (see (2-16)): 
 
(6-4) =)3(ASFE  

                ( )[ ] 1 

1
1

011
1

1 
−−−

∆ +−+ WAWAWAAWCW TT
ASF . 

 
In this case, the error covariance matrix of 
estimated (East, North, Time) parameters is a 
modified form of (6-1): 
 

(6-5) ( ) ++=
−1

01)3( WAWAE T
ENT  

       ( ) ( ) 1
011)3(1

1
01 

−−
++ WAWAA W EWAWAWA T

ASF
TT . 

 
6.4 Navigation using predicted ASFs 
 
In this case the ASFs used in the navigation are 
predicted from ASFs calibrated at a reference user 
location. The ASFs are calibrated at the reference 
location using a position/time update at that 
location. The error analysis for this calibration is 
given by (6-4) or, equivalently, (5-13) evaluated 
for s = t.  The ASFE  to use in (6-1) is given by (5-
13) evaluated for s = u: 
 
(6-6) uuASF EE =)4( . 
 
In evaluating (6-6), the required matrices A, Ctt, 
Cnn, and W0 all refer to the reference location at 
which the ASFs are calibrated. 
 
6.5 Navigation using predicted/a posteriori 
ASFs 
 
In this case the predicted ASFs are adjusted within 
the navigation estimation, hence the ASFE  to use in 
(6-1) is the a posteriori ASF error covariance 
matrix of the adjustment: 
 
(6-7) =)5(ASFE  

                ( )[ ] 1 

1
1

11
1

1 
−−− −+ WAAWAAWEW TT

uu . 
 

 
6.6 Navigation using differential ASFs 
 
In the conventional differential Loran concept, the 

ASFE  to use in (6-1) is the differential ASF 
(DASF) error covariance matrix with respect to the 
reference station, as computed using (4-9), plus the 
ASF calibration error covariance, as computed at 
the reference location using (6-4): 
 
(6-8) reference

ASFDASFASF ECE )3()6( += ∆ . 
 
As noted above (6-6), the second term of (6-8) is 
equivalent to evaluating (5-13) for s = t at the 
reference location of the position and time update. 
 
7.  OTF ASF Calibration Tests 
 
This section describes the verification and 
validation tests performed on the on-the-fly ASF 
calibration equations given in the previous 
sections.  The tests are limited to the covariance 
analysis approach. The tests used the geometry of 
five Loran chains in the eastern U.S., the phase 
velocity error covariance model described in 
Section 3, and a postulated TOA measurement 
error model. Notes on the implementation of the 
tests are given, followed by a discussion of the 
numerical results. 
 
7.1 Implementation Notes 
 
Map Projection 
The tests used planar computations.  The planar 
East and North components of a given path is 
computed from spherical coordinates as follows: 
 
(7-1) ( ) 0cos ϕλλ eijij RE −=∆  
(7-2) ( ) eijij RN  ϕϕ −=∆  
 
where: 

ii λϕ ,  � Latitude, Longitude of endpoint i 

jj λϕ ,  � Latitude, Longitude of endpoint j 

0ϕ  � Reference latitude (mid-latitude in the 
area) 

eR  � Average radius of the earth. 
 
Double Line Integration 
The implementation of the basic double line 
integral of the covariance function (3-3) involves 
the combined use of a closed form expression for 
the inner integral, followed by Romberg numerical 
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integration of the outer integral. The resulting 
computational speed has been found satisfactory.  
Future studies should investigate the use of 
covariance functions in spherical coordinates ([2] 
Section 23) and develop corresponding closed 
form and/or numerical implementation for the 
double line integral. 
 
The basic double line integral of the covariance 
function (3-3) along the paths point1-to-point2 and 
point3-to-point4 can be written in the form: 
 
(7-3) =I  
     

( )
∫ ∫

++++++

∆12 34

0 0

341233421210
2
34

2
122

12340,

1    3

  S S w

ssasasaass

dsdsC

ξ

 

 
where: 
S12 � Length of path from point 1 to point 2 
S34 � Length of path from point 3 to point 4 
s12 � Coordinate of integration point along 
path 1-to-2, reckoned from 1 
s34 � Coordinate of integration point along 
path 3-to-4, reckoned from 3 
 
and: 

(7-4) 2
12

2
1212 NES ∆+∆=  

(7-5) 2
34

2
3434 NES ∆+∆=  

(7-6) 2
13

2
130 NEa ∆+∆=  

(7-7) 
12

12131213
1 2

S
NNEE

a
∆∆+∆∆

−=  

(7-8) 
34

34133413
2 2

S
NNEE

a
∆∆+∆∆

=  

(7-9) 
3412

34123412
3  

2
SS

NNEE
a

∆∆+∆∆
−=  

 
Solving the inner integral of (7-3) in closed form 
results in ([5]): 
 
 (7-10) =I  
      

120
123211232341  sinh2sinh12 ds

D
saa

D
saaSS

∫ 













 +

−





 ++ −−  

 
where: 
 
 (7-11) =D  

     ( ) ( ) 2
12

2
312321

2
20

2

 4     22    4
3

4 sasaaaaa −+−+







−+

ξ  

 

In the implementation, the integral (7-10) is 
computed using the Romberg numerical integration 
technique ([4] Section 4.3).  The inverse 
hyperbolic sine is calculated using the equality: 
 

 (7-12) ( ) 




 ++≡− 1ln    sinh 21 xxx . 

 
For verification purposes, the integral (7-3) was 
computed by double numerical Romberg 
integration and the results compared with the use 
of (7-10) and with the special case (4-3).  The 
results from numerical integration agreed with 
those from the closed form expressions to within 
round-off error.  For the test runs of this report, the 
use of the combined numerical/analytical 
integration with (7-10) produced a speed-up factor 
of 15 compared to the use of purely numerical 
double integration with (7-3). 
 
Covariance Analysis Inputs 
The ith row of the design matrix A corresponds to 
the ith transmitter being observed and contains the 
sine and cosine of the bearing angle from the 
receiver to the transmitter: 
 
(7-13) [ ]1ii bcosbsinA =i . 
 
The TOA measurement error covariance matrix is 
assumed diagonal.  The ith diagonal element is the 
following assumed measurement error variance 
(meters2): 
 

 (7-14) ( )22-522
, 10 x 66.310  50    kmiobs d++=σ  

 
where dkm is the distance in kilometers between the 
receiver and the ith transmitter. The first term in (7-
14) accounts for clock and other errors while the 
second term is a rough fit to the SNR values of a 
test data set in the Madison, Wisconsin area. 
 
The a priori ASF error covariance matrices are 
computed using (4-2), (4-6), and (4-7). The a priori 
parameter weight matrix W0 is assumed diagonal 
and is computed from input standard errors of the 
East, North, and Time updates.   
 
7.2 Numerical Results 
 
Figure 3 plots the geometry of SAM control of the 
various Loran transmitters of the five chains used 
in the tests.  Secondary IDs are written close to the 
applicable Secondary-to-SAM path to aid the 
reading of the figure. For example, transmitter 8 
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(Gillette) is controlled by the Bismarck SAM 
relative to Master 6 (Havre). The paths to the 
SAMs enter the ASF error covariance models of 
Section 4. 
 
Figure 4 plots the location of the eleven test users 
(U0, U1, �, U10), along with the transmitters of 
the five Loran chains, used in this report. User 0 
(U0) is in Madison, WI. Users U1, U2, U3 are 
500, 1000, and 1500 km due west of U0, 
respectively. Users U4, U5, U6 are 500, 1000, 
1500 km due south of U0, respectively. Users U7, 
U8, U9, U10 are positioned in the periphery of the 
coverage area. 
 
Table 1 gives the nominal error parameters used in 
the tests. Exceptions to the nominal values will be 
explicitly noted in the discussion. The nominal 
scale factor error has a nominal standard deviation 
of 0.108 m/km and a correlation length of 200 km.  
The nominal (East, North, Time) parameter update 
has a standard error of (20, 20, 20) meters. The 
TOA measurement errors are modeled by (7-14). 
 
Table 2 shows the test result verifying successfully 
the implementation of the Romberg numerical 
integration using (7-10) against the closed 
expression (4-3). The table also gives an idea of 
the effects of SAM control on the ASF error 
model, by comparing the last two columns of the 
table. 
 
Figure 5 plots three levels of error ellipse 
refinement at each test user location. In the order 
of decreasing ellipse size, the three levels 
correspond to navigation using: 
• Case 1: a priori ASFs, (6-1) and (6-2) 
• Case 2: a posteriori ASFs with no 

position/time update, (6-1) and (6-3) 
• Case 3: predicted/a posteriori ASFs with 

position/time update at the U0 location, (6-1) 
and (6-7). 

The minimum and maximum 2DRSS position error 
over all test users for these navigation cases are 
given in Table 3. The 2DRSS is defined as twice 
the square-root of the sum of the squares of the 
east and north standard errors. 
 
The Case 1 2DRSS error ranges from 126 m (U5) 
in the central area to 298 m (U9) in Maine. The 
Case 2 2DRSS error ranges from 88 m (U5) to 206 
m (U9). The Case 3 2DRSS error ranges from 72 
m (U5) to 184 m (U9). In going from Case 1 to 
Case 2, the 2DRSS error is reduced by 27%, from 
a mean of 177 m down to 129 m.  In going from 

Case 2 to Case 3, the 2DRSS error is reduced by 
about 40% close to the reference calibration 
location, with diminishing effect away from the 
reference. The reduction is about (25%, 20%, 
10%) for users (500 km, 1000 km, 1500 km) away 
from the calibration reference. 
 
Figure 6 is a variation of Figure 5 (nominal case) 
to see the effect of increasing the scale factor error 
correlation length from 200 to 500 km. The 
corresponding minimum and maximum 2DRSS 
position errors are given in Table 3 as Cases 1a, 
2a, and 3a. In going from Case 1 to 1a, the 2DRSS 
error increases by 20-30% for the different users. 
In going from Case 2 to 2a, the 2DRSS error 
increases or decreases by 1-7%. In going from 
Case 3 to 3a, the 2DRSS error decreases by 1-7%. 
In short, comparison of Figures 5 and 6 shows 20-
30% larger outer ellipses due to the increased error 
correlation length, with the effects on the two inner 
ellipses being less than 10%. 
 
Figure 7 is a variation of Figure 5 to see the effect 
of doubling the scale factor standard error, from 
0.108 m/km to 0.216 m/km. Note the factor-of-two 
change in the plotting scale for the error ellipses 
between Figures 5 and 7.  As expected, the outer 
ellipses (navigation with a priori ASFs) are 
increased by close to 100%. In fact, examination of 
(6-1) and (6-2) shows that the ASF-only 
contribution to the error ellipse is increased by 
exactly 100%.  The size of the second-to-largest 
error ellipse at each site (navigation with a 
posteriori ASFs with no position/time update) is 
increased by 65-75%. The size of the smallest 
error ellipse at each site (navigation using 
predicted/a posteriori ASFs) is increased by 10-
65%, with the users farthest away from the 
reference calibration location (U0) receiving the 
largest percentage increase.  Table 3 gives the 
minimum and maximum 2DRSS errors 
corresponding to Figure 7 as Cases 1b, 2b, and 3b. 
 
Table 3 gives, in addition to the results referred to 
above, the results for navigation using: 
• Case 4: a posteriori ASFs with position/time 

update at the user location, (6-4) and (6-5) 
• Case 5: differential ASFs relative to U0, (6-1) 

and (6-8). 
For completeness, Table 3 also gives the resulting 
standard error of the time parameter for all test 
cases, in addition to the minimum and maximum 
2DRSS errors. 
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The Case 4 2DRSS error is close to 50 meters for 
all test users, indicating the direct influence of the 
position and time updates.  The Case 5 results are 
poor, illustrating that the conventional differential 
concept of relying on the equality of ASF errors 
between the user and the reference location works 
only for very short distances from the reference. 
 
In another test of navigation using predicted/a 
posteriori ASFs, the standard error of time update 
at User 0 was increased from 20 to 500 m to see 
the importance of the time update.  The resulting 
ASF error at each site increased by 5-30%, with 
the largest increase occurring close to User 0.  
However, the corresponding 2DRSS position error 
increase was only 1-6%. 
 
8.  Summary and Recommendations 
 
This paper presents a covariance analysis of 
multichain navigation with on-the-fly ASF 
calibration, an a priori ASF/ED error model, and 
an ASF/ED prediction technique. As a general 
recommendation, the algorithms developed in this 
paper should be implemented in an end-to-end 
system as described in [1].  The system should be 
tested and tuned with real data, all-in-view 
receiver, and truth navigation using GPS. The 
following specific recommendations are made. 
 
The covariance function (3-3) of ASF/ED errors 
should be fitted to real data in various geographic 
regions within the operating area. Sensitivity of the 
prediction and error analysis results to the possible 
range of covariance parameter values should be 
examined to determine whether it is necessary to 
use regionally valid sets of covariance parameters. 
 
In stand-alone Loran, where no position or time 
update is available from an external source, a 
posteriori ASFs should be used, i.e., adjust the a 
priori ASF model, using its full error covariance 
matrix, along with the navigation estimation of 
user position and time parameters. A 27% 
improvement over the use of a priori ASFs was 
achieved in the nominal tests. The specific 
improvement depends on the TOA measurement 
errors and observing geometry. 
 
In hybrid operations, in which an external 
position/time update is available (e.g., from GPS 
or surveyed airport position), the position/time 
update should be used to calibrate the ASFs using 
least squares.  Least squares collocation should be 
used to predict the ASF errors at the user location 

based on calibrated ASF errors at the nearest 
reference location. The full error covariance of 
predicted ASFs should be used in the navigation 
estimation. 
 
The described collocation equations predict the 
ASF errors along user-to-transmitter paths based 
on calibrated ASF errors along arbitrary paths, 
given an underlying covariance function of scale 
factor error.  It is recommended that this prediction 
technique be considered as a tool in a possibility to 
broadcast ASF corrections along predetermined 
paths from which Loran users can predict ASF 
corrections along their specific user-to-transmitter 
paths. 
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Figure 1. Scale factor error covariance function. 

Variance = (0.108 m/km)**2 and sample correlation lengths = 750, 500, and 200 km. 
 
 
 

 
Figure 2.  ASF standard error as a function of path length. 

Based on double integral of scale factor error covariance function with 
variance (0.108 m/km)**2 and various correlation lengths.
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Figure 3. Geometry of SAM control for Loran transmitters. 
Triangle: SAM; Diamond: Transmitter; ID with Asterisk: Master. 

Secondary IDs are written close to the applicable Secondary-to-SAM path.  
 

 
 

Figure 4.  Location of test users and transmitters. 
Diamond: Transmitter; Square: User; ID with Asterisk: Master. 

User U0 is in Madison, WI. 
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Table 1.  Nominal error covariance parameters used in the tests. 

Exceptions for certain tests will be explicitly stated. 
The scale factor error covariance function is given by Equation (3-3). 

Scale Factor Error Covariance Parameters: 
 
    std(m/km)   cnot(m**2/km**2)      corrl(km) 
     0.108       0.011664               200.0 
 
Uncorrelated Std Error of A Priori E, N, T update: 
     20.0 m      20.0 m        20.0 m 
 
Uncorrelated TOA measurement error variance (m**2): 
     ( )22-522 10 x 66.310  50    kmobs d++=σ  
 
 
 

Table 2. Standard deviation of ASF error along User0-to-transmitter paths, resulting from double 
line integration of the scale factor error covariance function along each path.  No emission delay 

(ED) effects means the integrals along Secondary-to-SAM paths have been excluded. Computation is 
based on Equations (4-2) and (4-6) applied to the same transmitter. 

Table Legend: 
   Dist     ... User0 distance to transmitter 
   (1)       ... User0 Std ASF Err; No ED effects; From closed form integral, Equation (4-3) 
   (2)       ... User0 Std ASF Err; No ED effects; Romberg integration based on Equation (7-10) 
   (3)       ... User0 Std ASF Err; w/ ED effects; Romberg integration based on Equation (7-10) 
 
    GRI   Sta     Name                         Seq        Dist                   (1)                 (2)                (3) 
                                                            No.        (km)                 (m)                (m)               (m) 
 
  7980  M  Malone            1  1394.822     92.27     92.26     92.26 
  7980  W  Grangeville       2  1384.565     91.79     91.79    105.44 
  7980  X  Raymondville      3  1981.928    117.67    117.67    112.97 
  7980  Y  Jupiter           4  1957.050    116.66    116.66    118.62 
  7980  Z  CarolinaBeach     5  1400.817     92.54     92.54     91.28 
  8290  M  Havre             6  1866.237    112.93    112.93    112.93 
  8290  W  Baudette          7   755.041     59.11     59.11     79.97 
  8290  X  Gillette          8  1390.732     92.07     92.07    103.82 
  8290  Y  WilliamsLake      9  2980.359    154.73    154.74    170.56 
  8970  M  Dana             10   396.583     35.76     35.76     35.76 
  8970  W  Malone           11  1394.822     92.27     92.26    113.61 
  8970  X  Seneca           12  1066.648     76.22     76.22    100.37 
  8970  Y  Baudette         13   755.041     59.11     59.11     74.69 
  8970  Z  BoiseCity        14  1369.849     91.10     91.10    100.88 
  9610  M  BoiseCity        15  1369.849     91.10     91.10     91.10 
  9610  V  Gillette         16  1390.732     92.07     92.07     98.74 
  9610  W  Searchlight      17  2336.461    131.54    131.54    140.31 
  9610  X  LasCruces        18  1934.063    115.72    115.73    131.25 
  9610  Y  Raymondville     19  1981.928    117.67    117.67    118.69 
  9610  Z  Grangeville      20  1384.565     91.79     91.79    113.42 
  9960  M  Seneca           21  1066.648     76.22     76.22     76.22 
  9960  W  Caribou          22  1869.089    113.04    113.05    127.55 
  9960  X  Nantucket        23  1662.111    104.27    104.27    111.90 
  9960  Y  CarolinaBeach    24  1400.817     92.54     92.54     89.81 
  9960  Z  Dana             25   396.583     35.76     35.76     49.76 
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Figure 5.  Three levels of error ellipse refinement at each test user location, corresponding to 

navigation using: (a) a priori ASFs, (b) a posteriori ASF with no position/time update, 
and (c) a posteriori ASF with position/time update at the User 0 (U0) location. 

 
Figure 6.  Same as Figure 5, except that scale factor error correlation length = 500 km. 
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Figure 7. Same as Figure 5, except that the scale factor standard error is doubled to 0.216 m/km. 

 
 

Table 3.  Minimum and maximum 2DRSS position error and time parameter standard error. 
Associated test user ID is given in parentheses.  Units: meters.  Cases 1a, 2a, 3a have scale factor 

error correlation length = 500 km.  Cases 1b, 2b, 3b have scale factor standard error = 0.216 m/km. 

2DRSS Time Sigma Navigation 
Case Min Max Min Max 

1. A priori ASFs 126 (U5) 298 (U9) 44 (U10) 80 (U9) 
2. A posteriori ASFs with no pos/time update 88 (U5) 206 (U9) 32 (U10) 61 (U9) 
3. Predicted/a posteriori ASFs (ASFs are 
predicted from User 0 calibrated ASFs, with 
pos/time update at the User 0 location only) 

 
72 (U5) 

 
184 (U9) 

 
23 (U10) 

 

 
45 (U8) 

4. A posteriori ASFs with pos/time update at the 
user location 47 (U5) 53 (U9) 16 (U10) 18 (U1) 

5. Differential ASFs relative to U0 (min/max 
excludes U0) 115 (U4) 333 (U9) 30 (U1) 102 (U8) 

1a. A priori ASFs 155 (U5) 374 (U9) 60 (U10) 108 (U9) 
2a. A posteriori ASFs with no pos/time update 87 (U5) 207 (U9) 33 (U10) 63 (U9) 
3a. Predicted/a posteriori ASFs (ASFs are 
predicted from User 0 calibrated ASFs, with 
pos/time update at the User 0 location only) 

 
66 (U5) 

 
181 (U9) 

 
22 (U4) 

 

 
44 (U8) 

1b. A priori ASFs 243 (U5) 579 (U9) 85 (U10) 154 (U9) 
2b. A posteriori ASFs with no pos/time update 125 (U6) 347 (U9) 52 (U10) 104 (U9) 
3b. Predicted/a posteriori ASFs (ASFs are 
predicted from User 0 calibrated ASFs, with 
pos/time update at the User 0 location only) 

 
83 (U0) 

 
290 (U9) 

 
26 (U0) 

 

 
70 (U8) 
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