

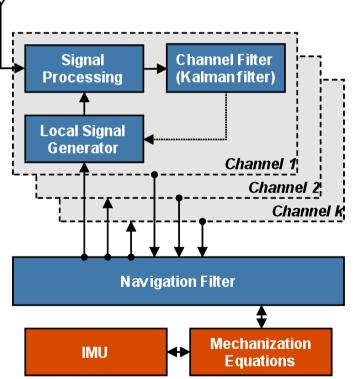
RIN NAV 08 Session 7B: Integrated Systems London, 28-30 October 2008

Outline

- Introduction
 - Motivation
 - Objectives
- Ultra-tight GNSS-IMU Integration
 - Ultra-Tight Receiver Architecture
 - Coherent Integration Issues
- Testing and Analysis
 - Test Description
 - Tracking Level
 - Measurement Domain
 - Position Domain
- Conclusions

Motivation

- GNSS RTK Positioning
 - "RTK" label implies high accuracy (≤ 10 cm)
 - Must use Differential GNSS
 - Must use carrier phase measurements (low noise and multipath), but...
 - Phase Lock Loops (PLLs) are the least stable under attenuated signals, and...
 - Phase measurements are ambiguous, with...
 - New ambiguity after each loss of phase lock...
 - To be evaluated as a real or integer number


Objectives

- Investigate impact of <u>extended coherent</u> <u>integration</u> and <u>oscillator quality</u> on RTK performance in an ultra-tight configuration...
- Under attenuated signal conditions, and
- Confirm previous analysis on effect of
 - Oscillator quality
 - IMU quality
- Use of real data collected under foliage
- Is the ultra-tight approach IMU or oscillator quality limited?

Ultra-Tight Rx Architecture

- Each channel filter estimates tracking errors for a given signal → Estimator-based tracking
- Error estimates for all channels combined in navigation filter and ...
- …signal parameters (code phase, Doppler) estimated by the navigation filter → Vector Tracking
- Inclusion of IMU data in navigation filter → Ultratight integration

Coherent Integration

- Increasing coherent integration time improves sensitivity by up to 25 dB, but...
- Challenges arise, namely...
 - Tracking errors
 - Doppler Error causes roll-off in power according to sinc squared law
 - Errors arise due to: dynamics, oscillator timing errors and thermal noise
 - Data modulation problem
 - Bit transitions = effective signal attenuation
 - Stability
 - For tracking as product of integration time and bandwidth increases loop becomes unstable

Overcoming the Challenges

- Tracking Errors
 - Use of IMU to reduce dynamic errors
 - Use of high quality oscillator to reduce timing errors
 - Long integration reduces errors due to thermal noise
- Data modulation
 - Bit estimation techniques (unreliable at low C/N₀)
 - External aiding
 - Modernized signals (inherently dataless)
- Stability
 - Direct design in the digital domain
 - Modified filter structures extends stability margin
 - Kalman filter tracking

Field Test Set-Up 1

- National Instruments front-ends
 - NI 5661 Down-converter/Digitizer
 - 12.5 Msps (selectable up to 100 Msps)
 - Raw data streamed to disk
 - Two used: one per oscillator, L1
- IMUs
 - Tactical Honeywell HG1700
 - MEMS Grade Cloudcap Crista
- Oscillators
 - Oscilloquartz BVA OCXO
 - Micro Crystal TCXO

Parameter	HG1700	Crista
Accelerometer Bias	1 mG	30 mG
Accelerometer Scale Factor	300 ppm	100,000 ppm
Gyro Bias	1 deg/h	1,800 deg/h
Gyro Scale Factor	150 ppm	N/A

Parameter	Oscilloquartz	Micro Crystal
h _o	2.51e-26	1e-21
h ₋₁	2.51e-23	1e-20
h_2	2.51e-22	1e-20

Field Test Set-Up 2

- Vehicle roof rigidly mounted antennas and IMUs
- Test routes 800 to 1000 m
- Up to 45 km/h
- Signals partly obscured
- LOS conditions for acquisition
- GPS reference rx 5 km away
- Eight SV, good geometry

Collection Environment

Three routes in suburban Calgary

 Attenuation of up to 20 dB recorded

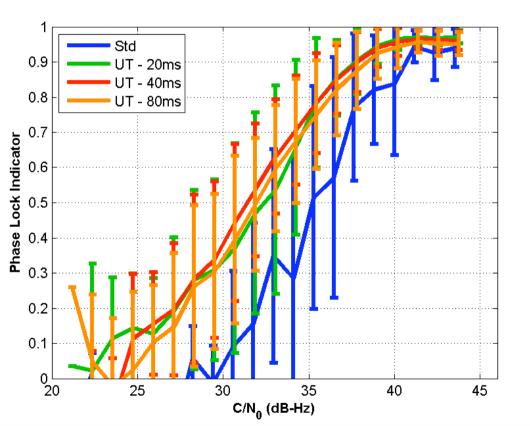
- Each route traversed twice
- Mixture of open sky and foliage

Data Processing 1

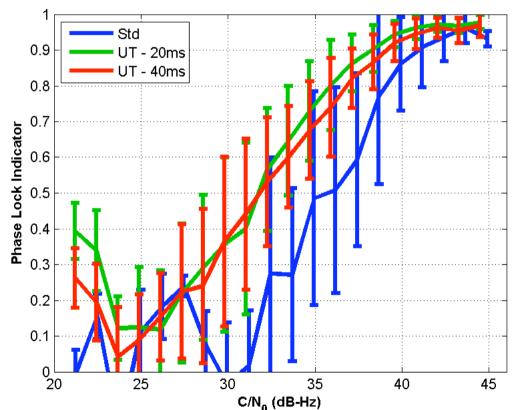
- Use of PLAN Group GSNRx[™] software receiver
- Configured to operate in two modes
 - Standard (GPS standalone) 20 ms coherent integration – <u>Baseline results</u>
 - Ultra-tight (UT) extended coherent integration
- Scenarios
 - Successive integration times of 20, 40 and 80 ms (UT configuration)
 - Use of two different IMUs with two different oscillators
- Rx measurements processed with FLYKIN+™
 - To derive RTK solution

Data Processing 2

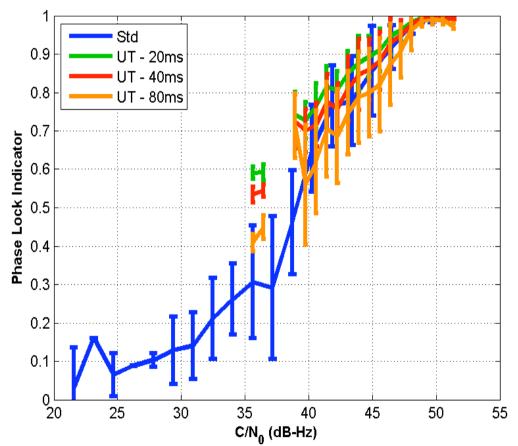
- Use of float solution from FLYKIN+[™] for RTK analysis
- Performance metrics used:
 - Tracking level: Phase Lock Indicator (PLI)
 - Value of +1 is perfect lock, 0 is 90° phase error -1 is 180° phase error
 - Measurement domain: Magnitude of cycle slips
 - More/larger cycle slips = worse performance in RTK
 - Position domain: Estimated accuracies of float UT solutions relative to standalone solution


Tracking Level Analysis

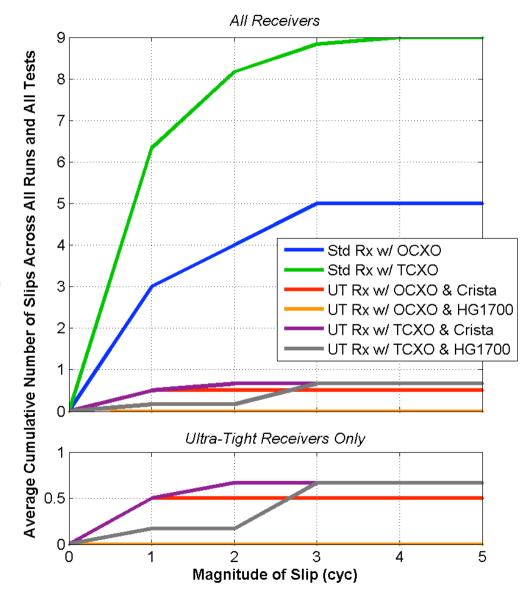
- Increased PLI at low C/N₀ indicative of better phase tracking performance
- The following slides representative subset of results
- All results from worst-case period of the tests
- Moving along street with most foliage


PLI - Low Elevation (< 18°) PRN 13

- Best combination: HG1700 IMU & OCXO Osc
- Results show advantages of ultratight integration
- ...but no discernible benefit of increased coherent integration

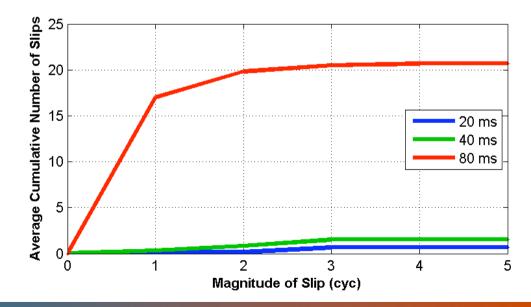

PLI - Low Elevation PRN 13

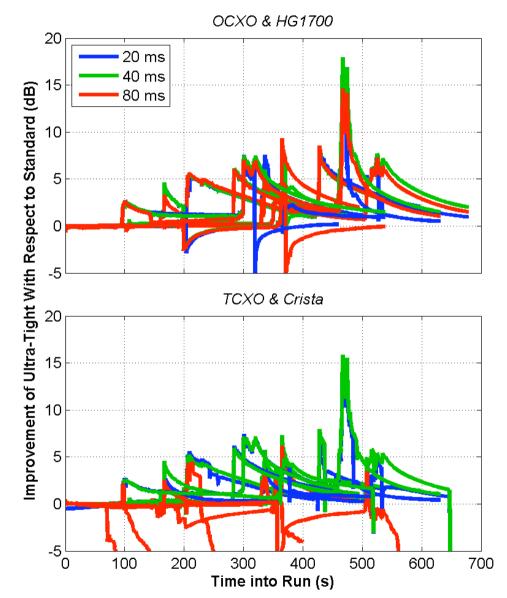
- Worst combination: MEMS IMU & TCXO Osc
- Similar to best case combination
- No 80 ms coherent integration – unable to track in this case
- Confirm previous analysis


PLI - High Elevation PRN 27

- HG1700 IMU & OCXO Osc
- Little difference between standard and ultra-tight modes
- Larger number of low C/N₀ values due to loss of lock during brief obstructions in GPS standalone mode

Measurement Domain Analysis 1


- Mean number of cycle slips ≤ given magnitude – averaged over all data sets
- Very clear advantage of UT integration
- Small difference between different IMU/Oscillator combinations


Measurement Domain Analysis 2

- Comparing results for different coherent integration times
 - HG1700 IMU & TCXO Osc
- 80 ms integration leads to more and larger cycle slips
 - Effect of lower quality oscillator

Position Domain Analysis

- Ratio of estimated 3D accuracies from float solution (in dB)
 - + \rightarrow ultra-tight better
 - → standard has better accuracy
- Steps due to filter resets in float solution
- Ultra-tight performs up to 5 dB better, with some exceptions

Conclusions

- Significant benefit in ultra-tight integration for DGPS RTK positioning
- Increasing coherent integration time does not appear to yield significant benefits
 - Can in fact degrade performance with lower quality oscillator
- Ultra-tight RTK solution primarily a function of oscillator quality
 - To a lesser extent: IMU quality
- UT integration is more oscillator limited than IMU limited