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Abstract  – The navigation problem 
associated with terminal aircraft guidance 
refers to position determination of an 
individual vehicle with respect to some 
point local to the environment as is the 
case with aircraft landing systems. This 
paper presents results for a relative 
navigation filter that achieves CAT3-level 
precision from a customized navigation 
satellite receiver's data message and the 
NORAD SDP4/SDP8 algorithm to establish 
the measured data. This work uses a 
precise, robust Unscented Kalman Filter 
(UKF) that is based on a realistic 
measurement model and a nonlinear 
propagation model. The UKF is based on 
the Unscented Transformation (UT) and 
provides a derivative free alternative to 
Extended Kalman filtering (EKF). 
Preliminary results indicate the method is 
particularly suitable for estimating the orbit 
ephemeris of navigation satellites such as 
GPS, Galileo and GLONASS. These 
estimates serve to generate pseudo-range 
corrections in an interoperable differential 
GNNS application. 
 
1. Introduction 

Differential Global Position System 
(DGPS) is a mode of operation of the 
Global Positioning System (GPS) satellite 
based positioning system that employs a 
reference station at a known location to 
calculate and broadcast corrections that 
could be applied to the pseudo-range by 
users in the vicinity of the receiver station. 
This approach is known to increase 
positional accuracy. In the literature, 
several algorithms have been developed 
that are designed to remove the effects of 
the so called common mode errors in all 
receivers in the vicinity of the reference 
station. These algorithms are based on the 
concepts of optimal filtering, in general and 

on the EKF in particular, developed along 
the lines suggested by  Farrell and Givargis 
[1] and Farrell et. al. [2]. 
 

Recent developments in differential GPS 
(DGPS) services have focussed mainly on 
employing a number of permanent 
reference stations to cover a certain area of 
operation. An alternative concept is based 
on the virtual reference station (VRS) 
concept. In this case, observation data for a 
non-existing “virtual” station are generated 
at a main or central reference station and 
transmitted to the virtual stations. This 
leads to a significant improvement in 
positioning accuracy. In the single 
reference station concept, a reference 
station in a DGPS network consists of the 
following main components: a GPS 
antenna/receiver assembly; a wireless data 
communication link to the user (usually a 
radio link); the reference station software 
on a PC which performs station monitoring, 
DGPS data correction model estimation 
and data archiving; interfaces and 
communication links for data transfer to the 
user. For integrity monitoring, a reference 
station usually consists of 2 independent 
GPS receivers to guarantee against system 
failure. The user receives either DGPS 
corrections for code positioning or real-time 
kinematic (RTK) data for carrier phase 
positioning in Radio Technical Commission 
for Maritime Services format. In the multiple 
station concept, multiple reference stations 
are connected to a central station using a 
data communication link such a LAN 
connection. Additional equipment at the 
reference station includes modems for data 
transfer and modification of the station 
software packages. The standard data 
transfer protocol is employed between each 
reference station and the control centre. 
The DGPS positioning accuracy at user's 
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position can be corrected by employing the 
pseudo-range correction information 
provided by the central and virtual 
reference stations. Thus the unknown 
user's position can be precisely calculated 
from the pseudo-range correction data. 
 

Multi-station Differential GPS systems 
fall into one of three categories: 
measurement domain, position domain, 
and state-space domain as described by 
Abousalem [3]. Measurement domain 
algorithms provide the user with corrections 
from a reference station or a weighted 
average of corrections from a network of 
reference stations.  In the position domain 
approach, the user computes independent 
positions using corrections from separate 
reference stations. A weighted average of 
these solutions is then computed. The 
disadvantage of both the measurement and 
position domain algorithms is a degradation 
of accuracy with distance from the 
network’s centre. In contrast, the state-
space approach models and estimates real 
physical parameters including satellite 
clocks and orbits, reference station 
troposphere and clocks.  The ionosphere 
delays can additionally be modeled from 
dual-frequency reference station data for 
single-frequency end users. However for 
local area applications, such as aircraft 
landing the position domain approach may 
be the best suited.  
 

In an aircraft landing system, not only 
does the pilot needs to know his accurate 
position but also the reference station 
which needs a preliminary estimate of his 
position. In this case, the IDGPS (Inverted 
DGPS) would be more suitable than DGPS. 
In IDGPS, a vehicle sends its GPS position 
information, usually in NMEA format, to the 
reference station and the differential 
correction is made at the reference station, 
not at the GPS receiver in the vehicle. 
However, in contrast to a standard IGPS 
system, that does not require an RTCM 
transmission to the vehicle, the pilot 
requires an update on his position from the 
reference station. Thus this situation can be 
handled provided the aircraft itself is 

treated as a roving virtual reference centre. 
The objective in using multiple reference 
stations in a network for GPS corrections is 
to model and correct for distance-
dependent errors that reduce the accuracy 
of conventional RTK or DGPS positions in 
proportion to the distance from a rover to its 
nearest reference station. It is well known 
that the most significant sources of error 
affecting precise GPS positioning are the 
ionosphere, troposphere and satellite 
orbits. The influence of the ionospheric 
error on different frequencies in the L-band 
used by satellite navigation systems is well 
understood. The ionosphere, which is 
subject to rapid and localised disturbances, 
is the main restriction on the station density 
in a reference network. The troposphere 
and orbit errors have an equal effect on all 
ranging signals used by current satellite-
based global navigation systems. The aim 
of a reference network is to model and 
estimate these error sources and provide 
this network correction information to the 
roving vehicle so that they may derive 
positions with a higher accuracy than with 
conventional RTK.  
 

In an earlier paper, Vepa and Zhahir [4] 
discussed the development of two and 
three frequency reference station 
algorithms that may be employed with any 
navigation satellite. The motivation behind 
the design of the algorithms has been the 
need for reference station algorithms that 
can deal with an interoperable system of 
navigation satellites to obtain high accuracy 
positioning information local to the roving 
vehicle. In order to achieve interoperability 
we provided for additional satellite orbit 
corrections that will ensure the consistency 
of satellite orbit predictions. To account for 
the fact we are now dealing with a variety 
of satellites, we made no assumptions of 
the error covariance matrices and adopted 
an adaptive filter based on the Method of 
Maximum Likelihood Estimation (MMLE), a 
technique applied to the EKF by Mehra [5]. 
However corrections of the orbiting 
satellite’s ephemeris are assumed to be 
independent of the other common mode 
errors and were not considered there.  



 

3 

 
In this paper we consider the issue of 

corrections to the orbiting satellites 
ephemeris. One of the major requirements 
that must be met in order to establish 
generic interoperable systems is to employ 
independent and yet consistent error 
models to ensure that the ephemeredes 
employed by the different systems can be 
easily converted from one to the other. In 
fact there is need to use a standard 
ephemeris to identify a satellite in an orbit. 
Currently different satellite navigation 
systems, such as GPS, GLONASS and 
GNSS (Galileo) use different methods for 
orbit estimation, correction and prediction. 
Moreover the error dynamics models used 
are extremely complex (see for example 
Hoots et. al. [6]). Thus our aim is to develop 
a orbit prediction method that bears a direct 
straight forward relationship to the various 
methods currently in use. To this end we 
explored the application of various adaptive 
Kalman filters, including the UKF to the 
orbit estimation problem. Although the 
standard UKF was initially a promising 
alternative features of the orbital dynamics 
led us to believe that the standard UKF 
must be employed with appropriate 
restrictions on the noise covariance 
statistics, to facilitate the calculation of the 
sigma points. To address some of the 
shortcomings of the standard UKF we 
propose a modified approach to the UKF. 
The proposed modified UKF uses singular 
value decomposition rather than Cholesky 
decomposition to estimate the sigma 
points. Moreover the singular values are 
replaced by there absolute values in the 
decomposition. Thus we present the results 
of the application of the modified approach 
to the UKF to orbit estimation to 
demonstrate its superiority over the 
standard approach. 
 
2. Adaptive Kalman Filters 

The discrete Kalman filter, outlined by 
Brown and Huang [7], is the basis for 
developing the adaptive Kalman filter 
algorithm. Consider a linear discrete time 
model representing the error correction 

states of for a generic differential satellite 
navigation system given by, 

111 !!! +"=
kkkk

wxx    (1a) 
kkkk
vxHz += ,   (1b) 

where 
k
x  is a ( )1!n  state vector, 

k
!  is a 

( )nn !  transition matrix, 
k
z  is a ( )1!m  

measurement vector and 
k

H  is a ( )nm!  
state to measurement distribution matrix. 
Variables 

k
w  and 

k
v  are uncorrelated 

Gaussian White noise sequences with zero 
means  

{ } { } 0==
kk

EE vw    (2) 
and covariance matrices defined by: 

{ } 0=T

ik
E vw  and { } 0=T

ik
E ww ,    (3a) 

{ } 0=T

ik
E vw  for ki ! ,  (3b) 

and 
{ }

k

T

kk
E Qww = , { }

k

T

kk
E Rvv =  (3c) 

where {}!E   is the expectation operator. The 
parameters, 

k
Q  and 

k
R  are the covariance 

matrices of the process noise sequence, 
k

w  and the measurement noise sequence, 
k
v  respectively.  
 

The state and covariance prediction 
equations defining the Kalman filter (KF) 
are: 

1
xx !!

!
"=

kkk
ˆˆ
1

    (4a) 
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where !
k
x̂  is the state vector predicted from 

the corrected state vector, 
1

x !k
ˆ  estimated at 

the end of the previous epoch, !
k
P̂  is the 

corresponding predicted state covariance 
matrix and 

1!kP  is the corresponding 
predicted state covariance matrix at the 
end of the previous epoch. The 
measurement correction or update 
equations defining the KF are, 

( )1ˆˆ
!!! +=

k

T

kkk

T

kkk
RHPHHPK   (5a) 

( )!!
!+=

kkkkkk
xHzKxx ˆˆˆ   (5b) 

( ) !
!=

kkkk
PHKIP ˆˆ    (5c) 

where 
k

K  is the optimal Kalman gain, 
which defines the correction that must be 
added to the predicted state vector in order 
to obtain the estimate. The correction is a 
function of the innovation sequence which 
is, 
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( )!!=
kkkk
xHz ˆ" .   (6) 

The innovation sequence is a White 
Gaussian noise sequence with zero mean 
when the filter is optimal. Moreover the 
observation error and state estimation error 
are orthogonal to each other. The 
innovation sequence is different from the 
residual which is defined as, 

( ) ( )
kkkkkkk
xxHvxHzr

k
ˆˆ !+=!= . (7) 

Thus employing equation 7 one could 
express the measurement noise 

k
v  as a 

linear combination of two independent 
components, the residual, 

k
r  and the 

optimal error in the estimate.  
Eliminating the measurements the 
innovation sequence may be expressed as, 

( )
kkkk
vxxH

k
+!= !

ˆ"    (8) 
and the covariance of the innovation is, 

{ }
k

T

kkk

T

kk
E RHPH += !ˆ"" .  (9) 

 
Assuming that the models are linear but 

with predicted states and measurements 
corrupted by some additive Gaussian noise 
with known variance of the type described 
equations 1, then it is known that the KF 
converges to the steady state regardless of 
the initial conditions. The adaptive KF 
therefore assumes that the magnitudes of 
the covariance matrices of the additive 
Gaussian noises are unknown and seeks to 
estimate the noise covariance matrices 

k
Q  

and 
k

R  pertaining respectively to the 
process and the measurement noise 
models. The adaptive KF is thus a method 
of self-tuning for adapting the covariance 
matrices, 

k
Q  and 

k
R  of the process and 

measurement noise model sequences. It is 
achieved by making the statistics of the KF 
innovation sequences consistent with their 
theoretical co-variances. This principle was 
established by Mehra [8] and can be 
employed to tune both 

k
Q  and 

k
R . An 

estimate of the covariance of the innovation 
is obtained by averaging the previous 
innovation sequence over a window length 
N: 

!
+"=

=
k

Nkj

T
jj

Nk

N
1

 , 1
###C    (10) 

and the covariance of the measurement 
noise sequence may be updated in 
principle by employing the relation, 

T

kkk

Nk

k
HPHCR

!
!= ˆˆ  ,

" .  (11) 
Assuming a fixed window length, the 
covariance matrix may be recursively 
updated by employing the recursive 
relation, 

( )
N

T

NkNk

T

kkNkNk 1111 , ,1 +!+!+++ !
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""""
"" CC .  (12) 

One could also directly estimate 
k

R  from 
the measurement residual. In this case it 
has been shown by Mohamed and 
Schwarz [9] that one has, 

T
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+=    (13) 
where, 
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The covariance of the process noise 

satisfies the equation,  
T

kkkkk 1111
ˆ

!!!
!

! ""!= PPQ      
T

kkkkkkk 111
ˆˆ

!!!
!

""!+= PPPHK . (15) 
Recognising that the state estimate is an 
optimal estimate and considering the 
covariance of the state correction, 
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where, 
( ) ( )

kkkk
xxxxx ˆˆ !!!="

! ,  (17) 
it may be expressed as, 

=!

+!=

" =!#""= $ kkkkk

k

Nkj

TNk
x

N
PHKPPxxC ˆˆˆ1

1

 , . (18) 

The covariance of the state correction, 
which is linearly related to the innovation 
may also be expressed as, 

T
k

Nk
k

k

Nkj

TNk
x

N
KCKxxC

 ,

1

 , 1
!"##= $

+%=

# . (19) 

This relationship between the covariance 
matrices suggests that the update of 

k
R  

could be done by employing the covariance 
of the residual while the update of 

k
Q  could 

be done by employing the covariance of the 
state correction. Hence the equation for 
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updating the covariance of the process 
noise may be expressed in principle as, 

T

kkkk

Nk

xkk 111

 ,

11
ˆˆ

!!!"!! ##!+$= PPCQQ .  (20a) 
In some references (see for example Myers 
and Tapley [10], Blanchet, Frankignoul and 
Cane [11]) an unbiased estimator is 
employed for the covariance of the state 
correction and equation 20a is expressed 
as, 

T

kkkk

Nk

xk

N

N
111

 ,

1
ˆ

1
!!!"! ##!+

!
= PPCQ .  (20b) 

 
 
3. The Extended and Unscented Kalman 
Filters 

Most dynamic models employed for 
purposes of estimation or filtering of 
pseudo range errors or orbit ephemeris 
errors are generally not linear. To extend 
and overcome the limitations of linear 
models, a number of approaches such as 
the EKF have been proposed in the 
literature for nonlinear estimation using a 
variety of approaches. Unlike the KF, the 
EKF may diverge, if the consecutive 
linearizations are not a good approximation 
of the linear model over the entire 
uncertainty domain. Yet the EKF provides a 
simple and practical approach to dealing 
with essential non-linear dynamics. The 
model takes the form, 

( )
111 !!! +=

kkkk
wxfx    (21) 

( )
kkkk
vxhz += .   (22) 

Given the Jacobians, 
( )

1111
ˆ

!!!! "=#
kkkk

xf ,    (23) 
and 

( )
k

kkk

!
"= xhH ˆ ,   (24) 

the state prediction equation defining the 
EKF is: 

( )
1

xfx !!
! =

kkk
ˆˆ

1
    (25) 

while the covariance prediction equation is, 
1111

ˆ
!!!!

!
+""=

k

T

kkkk
QPP .  (26) 

The measurement correction equations 
defining the EKF are, 

( )1ˆˆ
!!! +=

k

T

kkk

T

kkk
RHPHHPK   (27) 

( )[ ]!!
!+=

kkkkkk
xhzKxx ˆˆˆ   (28) 

( ) !
!=

kkkk
PHKIP ˆˆ .   (29) 

Equations 26, 27 and 29 are identical to 
equations 4b, 5a and 5c respectively. The 

main difficulty in applying the algorithm to 
problems related to the estimation of orbital 
ephemeris is in determining the proper 
Jacobian matrices. The UKF is a feasible 
alternative that has been proposed to 
overcome this difficulty, by Julier and 
Uhlman [12] an effective way of applying 
the KF to nonlinear systems.  
The UKF gets its name from the Unscented 
transformation, which is a method of 
calculating the mean and covariance of a 
random variable undergoing nonlinear 
transformation y = f(w). Although it is a 
derivative free approach, it does not really 
address the divergence problem. In 
essence the method constructs a set of 
sigma vectors and propagates them 
through the same non-linear function. The 
mean and covariance of the transformed 
vector are approximated as a weighted 
sum of the transformed sigma vectors and 
their covariance matrices.  
 

Consider a random variable w with 
dimension L which is going through the 
nonlinear transformation, y = f(w). The 
initial conditions are that w has a mean w  
and a covariance 

ww
P . To calculate the 

statistics of y, a matrix ! of 2L + 1 sigma 
vectors is formed. Sigma vector points are 
calculated according to the following 
conditions: 

w=
0

!     (30a) 
( )( )

iwwi
L Pw !++=" ,  

i = 1, 2,…, L,    (30b) 
 ( )( )

iwwi
L Pw !+"=# , 

 i = L+1, L+2,…, 2L,   (30c) 
where, 

( ) LL !+= "#$ 2 , 
!  is a scaling parameter between 0 and 1 
and !  is a secondary scaling parameter. 
( )( )

iww
L P!+  is the ith column of the matrix 

square root. This matrix square root can be 
obtained by Cholesky factorization. The 
weights associated with the sigma vectors are 
calculated from the following: 

( ) ( )!! += LW
m

0
   (31a) 

( ) ( )( ) !"## +$++= 2

0
1LW

c   (31b) 
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 21 ,  

i = 1, 2,…, 2L,   (31c) 
where !  is chosen as 2 for Gaussian 
distributed variables. The mean, covariance 
and cross-covariance of y calculated using 
the UT are given by, 
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where ( )m
i

W  and ( )c
i

W  are the set of weights 
defined in a manner so approximations of 
the mean and covariance are accurate up 
to third order for Gaussian inputs for all 
nonlinearities, and to at least second order 
for non-Gaussian inputs. The sigma points 
in the sigma vectors are updated using the 
nonlinear model equations without any 
linearisation.  
 

Given a general discrete nonlinear 
dynamic system in the form, 

( )
kkkk

wuxfx +=+ ,1 , ( )
kkk
vxhy +=  (33) 

where  n

k
R!x  is the state vector, r

k
R!u  is 

the known input vector, m

k
R!y  is the 

output vector at time k. 
k

w  and 
k
v  are, 

respectively, the disturbance or process 
noise and sensor noise vectors, which are 
assumed to Gaussian white noise with zero 
mean. Furthermore 

k
Q  and 

k
R  are 

assumed to be the covariance matrices of 
the process noise sequence, 

k
w  and the 

measurement noise sequence, 
k
v  

respectively. The UTs of the states are 
denoted as, 

( )
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UTUT
uxff ,= , ( )

k

UTUT
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while the transformed covariance matrices 
and cross-covariance are respectively 
denoted as, 
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and  
( )kk

fh
k

fh
k uxPP ,ˆ= .  (35b) 

The UKF estimator can then be expressed 
in a compact form. The state time-update 
equation, the predicted covariance, the 

Kalman gain the state estimate and the 
corrected covariance are respectively given 
by, 
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Thus higher order non-linear models 
capturing significant aspects of the 
dynamics may be employed to ensure that 
the KF algorithm can be implemented to 
effectively estimate the states in practice. 
 

For our purposes we adopt the both the 
UKF and EKF approaches to estimate orbit 
parameters using an adaptive approach. 
The methods of adapting the parameter 
matrices, 

k
Q  and 

k
R , defined earlier for 

the case of the linear discrete model may 
be employed. 
 
4. Orbit Modelling 
The most commonly employed model in 
navigation theory is based on the Lagrange 
planetary equations for the Keplerian orbital 
elements which is the basis for a variety of 
satellite error models (see for example 
Filipski, M. N. and Varatharajoo, R. [13]). 
However these equations which are 
patently non-linear may not provide the 
best parameterisation of the orbit for 
purposes of orbit estimation. Orbital 
dynamics has been classically expressed in 
terms of Cartesian position and velocity 
coordinates in inertial and in rotating 
coordinate frames. In a rotating reference 
frame, a dynamic model for the 
acceleration is obtained by including the 
effects of normal central force field and the 
primary disturbance effect due to the 
Earth’s equatorial bulge and flattening at 
the poles. The Earth’s equatorial bulge and 
flattening at the poles is due to the Earth’s 
oblateness and is represented by two 
coefficients, 

i
C
2

, i = 0 and 2.  
 

A length scale and a time normalization 
defined by, 
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r != µ , t
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!=" , 
are introduced, where 

n
!  is the angular 

velocity of the rotating frame. The 
equations of motion are then expressed in 
terms of non-dimensional Cartesian 
coordinates, x~ , y~ , z~ , as: 
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where, 1
32 =!=
snn
rµµ , 222 ~~~~ zyxr ++= , µ  

is the gravity parameter, and 
res
x
~ !! , resy

~ !! , 
res
z
~ !!  

are the residual  accelerations mainly due 
to the gravitational effects of the Moon and 
Sun. These are generally modeled as sum 
of biases and periodic terms including 
second harmonics. 

 

Fig. 1a. GLONASS satellite position prediction 
normalised to orbit radius versus time in 

minutes. 
 

The Earth’s gravitational perturbation 
potential can be expressed as, 
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where r is the distance of the body centre 
of mass, !  is the latitude measured from 
the equatorial plane, and !  is the longitude 
measured from the long end of the body 
(about 15º west longitude in the case of the 
Earth). In Earth fixed Cartesian 
coordinates, with the x-y plane in the 
Earth’s equatorial plane, the potential may 
be approximately expressed as, 
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Fig. 1b. GLONASS satellite normalised velocity 

prediction versus time in minutes. 
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In terms of the normalised coordinates 
Earth fixed ( )eee zyx ~ ,

~
 ,

~  and rotating ( )zyx ~ ,
~

 ,
~  

coordinates, assuming that the reference x-
y plane is inclined to the Earth’s equatorial 
plane by a fixed angle, the gradients of the 
non-dimension Earth’s gravitational 
perturbation potential, 
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U  , in rotating 

coordinates are, 
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! is the relative angular velocity of the 
satellite to the Earth fixed frame, i is the 
inclination orbit to the Earth’s equatorial 
plane and 2

22

~

sii
rCC = . The oblateness 

coefficients, 
i

C
2

, are also related to the 
principal moments of inertia of the Earth 
and could be expressed in terms of 
alternate relationships to the zonal 
harmonic coefficients, J2 = 1.082616 ! 10-3, 

J3 = – 2.53881 ! 10-6, J4 = –1.65597! 10-6 
and to J21 = 0, J22 = 1.86! 10-6, J31 = 
2.1061! 10-6. The orbit is defined by 
equations 37 and 38. These can be 
numerically integrated and compared with 
the position and velocity data for a typical 
GLONASS navigation satellite 
independently generated from the NORAD 
Two Line Element dataset from celestrak 
website[14] by using the SDP4 method, 
(Hoots et. al. [6]) with the position 
normalised to a mean altitude of 25490 km, 
and the velocity to the mean circular 
velocity of 3.9545 km/sec. These position 
and velocity responses are shown in 
figures 1 and 2 respectively.  

 
Fig. 2a. GLONASS satellite position 

prediction error versus time in minutes. 
 

The results indicate that the simulated 
response follows the measured position 
and velocity data quite accurately.  
However looking very closely at the figures, 
one may observe that the simulated 
responses drift very slowly away from the 
measurements due to the presence of 
secular terms thus establishing the need for 
filtering. It is also observed that the 
simulation of the nonlinear dynamics 
correctly predicts the harmonic response 
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which is absent in the response obtained 
from the Hill-Clohessy-Wiltshire type 
linearised equations of motion. 

 

 
Fig. 2b. GLONASS satellite velocity 

prediction error versus time in minutes. 
 
5. UKF based Orbit Estimation  

In the case of the classical linear KF 
which is not only an optimal filter but also 
an asymptotically stable filter, the filter 
estimates can be expected to follow the 
measurements closely even when the 
states of the process or plant model are 
unstable. However in the above orbit model 
it is not possible to apply the linear KF and, 
for this reason, we choose to employ the 
UKF. In figures 3 and 4 the state estimates 
for the position and velocity errors and the 
error in the measurement estimate are 
shown for the same satellite as in figures 1 
and 2.  The measurement vector consists 
of six independent simulations of the 
position and velocity as well actual 
measurements of the pseudo range. The 
maximum predicted error in the pseudo-
range is thus less than 10m relative to the 
data generated for the GLONASS satellite. 
It is clear that the estimates tend to follow 
the states of the plant model and the 

measured position and velocity data. 
Moreover the observed drift rates in the 
simulations are reduced. However there is 
need for some caution in applying the UKF 
due to its limitations. 

 
Fig. 3a GLONASS satellite UKF based position 

estimate error versus time in minutes. 
 
The UKF is based on approximating the 
probability distribution function than to 
approximating a nonlinear function as in the 
case of EKF. The state distributions are 
approximated by a Gaussian probability 
density, which is represented by a set of 
deterministically chosen sample points. The 
nonlinear filtering using the Gaussian 
representation of the posterior probability 
density via a set of deterministically chosen 
sample points is the basis for the UKF. 
Thus it is based on statistical linearization 
of the state dynamics rather than analytical 
linearization (as in the EKF). The statistical 
linearization is performed by employing 
linear regression using a set of regression 
(sample) points. The mean and covariance 
at the sigma points represent the true mean 
and covariance of the Gaussian density.  
When transformed to the nonlinear 
systems, they represent the true mean and 
covariance accurately only to the second 
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order of the nonlinearity. Thus this can be a 
severe limitation of the UKF unless the 
nonlinearities are limited to the first and 
second order in the process model. 
 

 
Fig. 3b GLONASS satellite UKF based velocity 

estimate error versus time in minutes. 
 

 

 
 

Fig. 4 GLONASS satellite UKF based pseudo-
range estimate error versus time in minutes. 

 
 
6. Modified UKF based Orbit Estimation 
One of the difficulties that one encounters 
repeatedly while using the UKF algorithm is 
the fact the matrix 

ww
P  in equations 30a 

and 30b is not positive definite. 
Consequently one needs to choose 

k
Q  and 

k
R  in equations 36 to be sufficiently 

positive definite so as to prevent 
ww
P  from 

becoming negative definite. This imposes 
an undue and unrealistic constraint on 
nature of the noise sequences which would 
no longer represent the true statistics of the 
process and sensor noise vectors.  

 
Fig. 5a GLONASS satellite modified UKF based 
position estimate error versus time in minutes. 

 
To avoid this problem we do not employ the 
Cholesky decomposition method in 
computing the square root of 

ww
P  and 

employ the method of singular value 
decomposition (SVD) and then replace the 
singular values by their absolute values. 
This is a perfectly valid alternative in 
computing the sigma points and then there 
is no need to choose 

k
Q  and 

k
R  in 

equations 36 to be sufficiently positive 
definite so as to prevent 

ww
P  from 

becoming negative definite. This 
modification of the UKF algorithm resulted 
in a remarkable improvement in the 
performance of the UKF. In figures 5 and 6 
the state estimates for the position and 
velocity errors and the error in the 
measurement estimate are shown for the 
same satellite as in figures 3 and 4, where 
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the estimates are now obtained by the 
modified UKF.  

 
Fig. 5b GLONASS satellite modified UKF based 
velocity estimate error versus time in minutes. 

 
 

The maximum predicted error in the 
pseudo-range is now reduced to less than 
1mm relative to the data generated for the 
GLONASS satellite. Moreover it is clear 
that the estimated error is considerable 
more uniform in figure 6 than it is in figure 
4, where it is quite visibly sinusoid and 
biased. Thus with the use of the proposed 
modification in place it is possible to 
substantially improve the performance of 
the UKF, because it facilitates the use of 
the most appropriate approximations for the 
noise statistics. 
 

 
 

Fig. 6 GLONASS satellite modified UKF based 
pseudo-range estimate error versus time in 

minutes. 
 

We also observe from figure 6 that the 
magnitude of the measurement error is still 
biased. This is to be expected as we are 
only seeking to estimate the orbital errors 
which contribute exclusively to the errors in 
the satellite’s ephemeris. 
 
7. Adaptive UKF based Orbit Estimation 

In order to employ the UKF when precise 
statistics of the process and measurement 
noise vectors are not available, the 
adaptive filter method proposed by Song, 
Qi and Han [15] is used to estimate the 
orbit parameters. The covariance matrixes 
of measurement residuals are recursively 
updated in the UKF. 
 

The measurement and state noise 
covariance matrices, in the case of the 
UKF, may be expressed as: 

!
!"

h

k

Nk

k
PCR ˆˆ  ,

# ,    (39a) 
f
kk

Nk
xk 1

 ,

1
ˆˆ

!"! !+# PPCQ   (39b) 
which are analogous to equation 11 and 
the right hand side of equation 20.  
Corresponding equation 13 we may 
express the measurement noise covariance 
as, 

h

k

Nk

rk
PCR ˆˆ  ,

+=    (40) 
which involves the further computation of 
h

k
P̂ , by applying the unscented nonlinear 
transformation, ( )

k

UT
xh ˆ  to the state 

estimate, 
k
x̂ . The measurement noise 

covariance may be updated in principle by 
employing the equation 39a.  
 

The nonlinear relationships between the 
covariance matrices also suggests that the 
update of 

k
R  could be done by employing 

the covariance of the residual (equation 40) 
while the update of 

k
Q  could be done by 

employing the covariance of the state 
correction (equation 39b). However the 
simultaneous adaptation of both 

k
Q  and 

k
R  is not considered robust, as discussed 
by Blanchet, Frankignoul and Cane [11]. 
For this reason we restrict our attention to 

k
Q  adaptation as it is the process statistics 
that is really unknown.  Furthermore it was 
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observed that the magnitudes of the filter 
gains were relatively small and for this 
reason equation 39b was approximated as, 

Nk

xk

 ,

1
ˆ

!" # CQ .   (41) 

 
Fig. 7a GLONASS satellite adaptive UKF based 
position estimate error versus time in minutes. 

 
The results of applying the adaptation 

scheme, with the additional modification in 
computing the square root of the 
covariance matrices by employing SVD as 
discussed in the preceding section, are 
illustrated in figures 7 and 8. These results 
clearly demonstrate the usefulness of the 
adaptive modified UKF. 
 

The results indicated that the bias and 
drift in the estimate produced by the 
adaptive UKF, as it approaches steady 
state, are of the same order as the modified 
UKF.  Moreover it takes at least an hour to 
approach steady state. 
 
8. Conclusions and Discussion 
 
The UKF is far better than the EKF over a 
relatively large time frame. It is observed 
that the UKF is tracking the true state over 
the entire time frame. Earlier experience 

with the EKF indicates that it is unable to 
track the true state as the estimate tends to 
slowly drift from it. The main reason for the 
better performance of the UKF is that the 
UT approximates the mean and the 
covariance to third order which is better 
than linearization. Furthermore the modified 
UKF facilitates the use of arbitrary realistic 
models of the process and measurement 
noise statistics and thus gives a very good 
estimate of a navigation satellite’s pseudo-
range. 

 
Fig. 7b GLONASS satellite adaptive UKF based 
velocity estimate error versus time in minutes. 

 

 
 

Fig. 8 GLONASS satellite adaptive UKF based 
pseudo-range estimate error versus time in 

minutes. 
 

In most orbit predictions there is little a 
priori information about the state and 
measurement noise inputs. For this reason 
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adaptive filtering is appropriate as it allows 
for the interoperable operation of the orbit 
estimator as it permits one to switch from 
one satellite model to another. Thus the 
adaptive UKF serves to generate pseudo-
range corrections in an interoperable 
differential GNNS application. Moreover the 
performance of the adaptive UKF is almost 
as accurate as the modified UKF.  
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