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ABSTRACT

Common navigation systems rely on different sensors,
which are combined in the navigation filter. An inertial
navigation system provides accurate relative position up-
dates along short periods of time. To ensure long term
accurate and autonomous navigation information a radar
altimeter or synthetic aperture radar (SAR) can be used.
Synthetic aperture sensor captures the earth surface in
range and azimuth coordinates. The captured image is
transformed into earth coordinates and matched to a map
which contains specific well visible and unambiguous fea-
tures like crossroads or rivers. The position shift between
the captured SAR image and the reference feature is used
to aid the navigation information.

Due to the nonlinearity of the measurement equation
sigma-point Kalman filter was implemented for SAR/INS
integration. Higher order terms in the measurement equa-
tion may become significant in the presence of larger
height errors. Sigma-point Kalman filter (SPKF) takes
higher order terms into consideration.

This paper concentrates on the processing of the de-
tected position shift between the SAR image and the
reference feature. Full measurement equations are derived.
It is shown, that is possible to provide three-dimensional
update information from SAR measurements. The ob-
tainable accuracy is given depending on various flight
scenarios.

1. INTRODUCTION

Nowadays navigation systems rely on different sensors
to provide accurate and reliable navigation information.
Most important is the inertial measurement unit (IMU)
which typically consists of three accelerometers and tree
gyroscopes to measure accelerations and angular rates
along all tree axes. A strapdown algorithm integrates mea-
surements in a proper way to propagate velocity, position
and attitude information. However navigation accuracy
decreases with time. Additional sensors have to be used
to correct position and velocity estimates frequently to
prevent unbounded growth of navigation errors.

Radar altimeter measurements are able to accurately
update the navigation information in regions of sufficient
rough terrain by a comparison of the measured terrain
height and a stored height data map. Thus, the navigation
solution is widely independent from external navigation
signals e.g. GPS which can easily be jammed. However,
radar altimeter measurements can not guarantee an aid-
ing of the inertial navigation system during flights over

smooth terrain. To avoid increasing navigation errors a
synthetic aperture radar measurement step is proposed.

A synthetic aperture sensor images the earth surface
in range and azimuth coordinates. The image is trans-
formed into earth coordinates and matched to a map
which contains specific well visible and unambiguous
features like crossroads or courses of rivers. The position
shift between the captured SAR image and the reference
feature is used to aid the navigation information. Many
matching techniques are described in literature. Thus, it
is assumed that matching algorithms exist and that a
match between the SAR image and the reference feature
containing feature position as well as feature position
accuracy can be achieved.

This paper concentrates on the processing of the de-
tected position shift between the SAR image and the
reference feature. It is shown, that is possible to provide
three-dimensional update information from SAR measure-
ments. Simulation results additionally show that a SAR
measurement step leads to a more accurate and more
reliable position estimate in regions of smooth terrain.

An error in height estimation leads to an error of the
estimated feature position in a nonlinear way. Higher
order terms in the measurement equation may become
significant in the presence of height or velocity errors.
Sigma-point Kalman filter (SPKF) takes higher order
terms into consideration. Due to this fact a sigma-point
Kalman filter was implemented.

First chapter 2 gives an overview of a SAR/INS system.
Chapter 3 introduces the SAR sensor geometry and the
measurement equations used for Kalman filtering in detail.
Nonlinear Kalman filtering by sigma-point Kalman filter
is described in chapter 4. Chaper 5 briefly sumarizes
standard terrain referenced navigation (TRN) systems
which could be combined to SAR/INS systems. Finally
simulation results are given in section 6.

2. SYSTEM OVERVIEW

The desired navigation system fuses inertial measure-
ment data with feature measurements from synthetic aper-
ture radar capturing the earth’s surface. A block diagram
is shown in figure 1. The inertial measurement data is
first integrated by a strapdown algorithm (SDA). The
SDA provides position, velocity and attitude information
by integrating acceleration measurements~aB

ib und angular
rate measurements~ωB

ib in body frame coordinates [1].
However, measurement errors of the inertial measurement
unit (IMU) and the integration process of the SDA leads
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to an unbounded growing of the navigation errors over
time. Additional update information extracted from SAR
feature matching is used to avoid increasing navigations
errors.
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Figure 1. System

The synthetic aperture radar receives radar responses
of the transmitted chirp pulses over a certain period
of time. SAR raw data is then processed by a SAR
processing algorithm to form a radar image. Hereby SAR
processing depends on the knowledge of absolute velocity
and position information from the SDA for range and
azimuth compression as well as to transform the SAR
image to ground coordinates.

SAR images are compared to the feature map data by a
feature matching algorithm. Features which are expected
to occur in the SAR image are selected from feature
data and matched to the captured SAR image. Different
SAR feature matching techniques are described in [2],
[3] and [4]. The displacement is according to equation
1 expressed by the position difference of the map feature
pmap

f and the feature captured by the SAR sensorpsar
f .

The displacement between map feature position and the
position where the feature occurs in the SAR image is
used to update the navigation information of the SDA by
Kalman filtering.

δ =

(

δx

δy

)

=

(

psar
f,x − pmap

f,x

psar
f,y − pmap

f,y

)

(1)

Map feature errors, inaccuracies of the alignment pro-
cess, and navigation errors in position and velocity com-
ponents lead to a position shift between measured and
estimated feature position in a nonlinear way. This non-
linearity can be taken into consideration by sigma-point
Kalman filtering to improve SAR/INS integration. Figure
2 shows an example of a feature with its displacement.

A barometric altimeter is integrated to the navigation
system to aid height estimation.
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Figure 2. Feature displacement

Additionally a radar altimeter which measures distance
form aircraft to the ground level leads to an improved nav-
igation accuracy and a more reliable position estimation
during flights over rough terrain.

3. SYNTHETIC APERTURE RADAR

Synthetic aperture radar is able to provide two di-
mensional images of the earth surface independently of
external sources and time of day due to active illumination
of the scene. Additionally SAR imaging is nearly indepen-
dent of weather influences which is its main advantage
compared to optical systems.

In general the SAR principle means the collection of
many radar responses of the transmitted chirp pulses
by the radar antenna over a straight flight track at the
pulse repetition frequency. By means of this raw data
collection a larger synthetic aperture is formed which
allows to achieve good resolution in azimuth direction.
Range resolution is achieved by transmitting chirp pulses
of a certain bandwidth.

A main disadvantage is the condition of a nearly straight
flight path during the collection of the raw data. Therefore
SAR snap shot mode is assumed that only integrates radar
responses over a short flight path which can be assumed to
be nearly straight. On the other hand azimuth resolution is
decreased due to the shorter synthetic aperture but azimuth
resolution is still sufficient for SAR feature matching.

3.1. SENSOR COORDINATE FRAME

First a sensor coordinate frame called s-frame has to
be defined. Feature displacementδ is given in s-frame
coordinatesx andy.

The sensor frame coordinate system is shown in figure
3. The origin is located underneath the estimated aircraft
position at the height level of the expected feature in the
current sar image. The x-axis of the sensor coordinate
system is parallel to the horizontal velocity of the aircraft,



z-axis points upwards and y-axis forms a right-handed
coordinate system. Compared to navigation frame coordi-
nates north, east and down the sensor coordinate is rotated
by the angleΨv which corresponds to the heading of the
aircraft.

Ψv = arctan

(

v̂N
e

v̂N
n

)

(2)

A transformation from navigation frame coordinate
system to sensor frame coordinate system is done by using
the transformation matrixCS

N given in equation 3.

CS
N =





cos(Ψv) sin(Ψv) 0
sin(Ψv) − cos(Ψv) 0

0 0 −1



(3)

Thus, the estimated velocitŷ~vS is calculated from̂~vN

according to equation 5. Estimated position in s-frame
coordinates is given in equation 4. Due to the definition
of the origin of the sensor frame coordinate system the
position estimates inx and y direction always equal to
zero.

~̂pS =
(

0 0 p̂z

)

(4)

~̂vS =
(

v̂x 0 v̂z

)T
= CS

N ~̂vN(5)
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Figure 3. Geometry

The feature matching process and the measurement are
done in s-frame coordinates. All measurement equations
are derived in the following chapters in the s-frame
coordinate system that is more descriptive than navigation
frame coordinates in the case of SAR measurements.

3.2. SYNTHETIC APERTURE RADAR MEASURE-
MENT

Due to the short integration time of SAR snap shot
mode it is possible to just consider the SAR geometry at
the reference point which is the middle of the synthetic

aperture of the current image and corresponds to the s-
frame position given in equation 4. A certain feature point
is assumed to be located at~pf , The vector from SAR
antenna to the feature point then is expressed by

~rf =
(

pf,x pf,y −pz

)

.(6)

Synthetic aperture radar processing forms a radar image
depending on the range and the Doppler information of the
reflection points. The current feature point located at~pf

leads to a range and Doppler frequency given in equation
7 and 8.

R = |~rf |(7)

fd =
2 · ~rf · ~vS

|~rf | · λ
(8)

Doppler and range information within the radar raw
data are used to restore the image by a SAR processing
algorithm. Azimuth direction is determined by Doppler
frequency information. The current feature point will
occur at slant coordinatesRs and Rx, where Rx is
along the aircraft velocity axes andRs is the slant range
perpendicular to the velocity axes.

Rx =
~rf · ~vS

|~̂vs|
(9)

Rs =
√

R2 − R2
x(10)

However, the SAR image has to be transformed into xy-
coordinates in sensor frame for alignment to the map data.
Image transformation is done within the SAR processing
block. With respect to the estimated height of the aircraft
above the feature point the feature will occur in s-frame
coordinates at

(11)

psar
f,x = Rx · cos(θv) + tan(θv) · (pz + Rx · sin(θv))

(12)

psar
f,y =

√

Rs −
(

pz

cos(θv)
+ Rx · tan(θv)

)2

.

To calculate the position displacement of the feature
point according to equation 1, the map feature position has
to be known. Map feature position in sensor coordinate
system is determined by the difference of the stored
feature position and the current estimated position of the
aircraft and a rotation into the desired s-frame coordinate
system.φf andλf denote the features longitude and lat-
itude position,φ andλ the aircraft position, respectively.
Rn is the earth radius in north direction andRe describes
earth radius in east direction.

pmap
f = CS

N ·





(φf − φ)/Rn

(λf − λ)/(Re · cos(Φ))
0



(13)

The measurement corresponds to the difference between
the feature position in the SAR image and the estimated
feature position from feature map data. Additionally the



measurement is affected by horizontal and vertical inac-
curacies of the map feature position and the uncertainty
of the alignment process. These errors are represented by
the measurement noise. Errors of the SAR sensor itself are
assumed to be very small compared to map and alignment
errors and are neglected. Thus, the measurement equation
is written as

δ̃ =

(

δ̃x

δ̃y

)

=

(

hx(~p,~v, νx)
hy(~p,~v, νy)

)

(14)

=

(

psar
f,x − pmap

f,x

psar
f,y − pmap

f,y

)

+

(

νa,x

νa,y

)

4. SIGMA-POINT KALMAN FILTER

A sigma-point Kalman filter in error state formulation
has been implemented for SAR/INS integration. The state
vector of the filter includes position, velocity, attitude und
bias errors of the accelerometers and gyroscopes.

~̂x =
(

∆~pN ∆~vN ∆~Ψ ∆~ba ∆~bω

)

(15)

In opposite to the extended Kalman filter, the SPKP
does not require the approximation of nonlinear measure-
ment functions using the Jacobian to calculate the Kalman
gain matrix. Instead, the probability density function of
the Kalman filter state, which is assumed to be Gaus-
sian, is replaced by a deterministically chosen discrete
point density. These points are called sigma-points. In
the measurement step, the sigma-points are transformed
through the nonlinear measurement model. The mean,
covariance and correlation are calculated directly from the
transformed sigma-points, which ensures determination of
mean and covariance accurately at least to the second
order, while the EKF achieves first order accuracy only
[5]. First an augmented state vector~̂xa is constructed
which includes the state vector and the measurement noise
components. The dimension of this augmented state vector
is denoted by L.

~̂xa = E[~xa] =
(

~̂x
T
~̂ν

T
)T

(16)

P
a = E[(~̂x

a − ~̄x
a
) · (~̂xa − ~̄x

a
)T ] =

(

P 0

0 R

)

(17)

The measurement noise includes horizontal errorsνf,h

and vertical errorsνf,v of the reference feature and errors
of the matching process in x and y directionνa,x andνa,y,
respectively.

(18) ~ν =
(

νf,h νf,h νf,v νa,x νa,y

)T

The covariance of the augmented state vector is con-
structed form the filter state covariance and the measure-
ment noise covariance.

R =













σ2
f,h 0 0 0 0

0 σ2
f,h 0 0 0

0 0 σ2
f,v 0 0

0 0 0 σ2
a,xx σ2

a,xy

0 0 0 σ2
a,xy σ2

a,yy













(19)

The measurement noise covariance again includes hor-
izontal and vertical map feature errorsσf,v and σf,h as
well as alignment errors of the matching processσa

A set of 2L+1 sigma-points is chosen to represent the
state vector and its covariance. The scaling parameterζ
determines the spread of the sigma-points and must be
chosen with respect to the weighting factors, such that the
point density possesses the same covariance. The square
root of the augmented covariance matrix is calculated
using the Cholesky decomposition. Each column of the
square root forms a single sigma-point within the sur-
rounding of the state vector.

~χa
0 = ~̂x

a
(20)

~χa
i = ~̂x

a
+ ζ

√
Pa

i, i = 1...L(21)

~χa
i+L = ~̂x

a − ζ
√

Pa
i, i = 1...L(22)

In the filter estimation step, all sigma-points are trans-
formed by the measurement equation.

~Yi = ~h(~χa
i )(23)

With this set of transformed sigma-points, mean, co-
variance and correlation between sigma-points and trans-
formed sigma-points are calculated directly using the
given formulas. Within the calculation of the correlation
only the sigma-point components which represent the state
vector are used instead of the augmented sigma-point
vector.

δ̂ =

2L
∑

i=0

wm
i

~Yi(24)

Pyy =

2L
∑

i=0

2L
∑

j=0

wc
ij(~Yi − δ̂)(~Yj − δ̂)(25)

Pxy =

2L
∑

i=0

2L
∑

j=0

wc
ij(~χi − ~̂x)(~Yj − δ̂)(26)

The knowledge of these quantities then allows the
update of the state vector estimation as well as the state
vector covariance by the Kalman filter equations.

K = PxyPyy

−1(27)

~̂x
+

= ~̂x
−

+ K(δ̃ − δ̂)(28)

P
+ = P

− − KPyyK
T(29)

These update equations of the sigma-point Kalman
Filter are analogous to an extended Kalman filter update
step. The difference is in calculation of covariancePyy

and correlationPxy as well as mean̂δ which are accurate
to the first order term in case of sigma-point Kalman
filtering. Standard Kalman filter update step is given for
comparison.

K = P
−

H
T · (HP

−

H
T + R)−1(30)

~̂x+ = ~̂x− + K · (~δ − δ̂)(31)

P
+ = (I − KH) · P−(32)



5. TERRAIN REFERENCED NAVIGATION (TRN)

In a terrain referenced navigation navigation system
a radar altimeter measures height of the aircraft above
ground level. The radar height is used as approximation
of the aircraft to the nadir point directly below the aircraft.
This can be done because of the use of wide radar beam
width. This ensures that even for a pitching or rolling
aircraft the nadir point lies within footprint of the radar
antenna.

The generation of position aiding is done by processing
radar height measurements and a reference map which
contains terrain elevations at certain spacing along latitude
and longitude coordinates. For terrain with reasonable
roughness the radar height measurements can be compared
to the reference map to update vertical as well as horizon-
tal position. During flights over flat terrain where terrain
roughness is low compared to the radar noise level the
horizontal position cannot be identified.

Standard terrain referenced navigation with nadir point
height measurements and a sequential processing is com-
bined to the SAR/INS system.

(33) r̃ = −h − hmap(φ, λ) + ν

r̃ height over ground measurement
h absolute height in down coordinates
hmap terrain height
φ, λ latitude and longitude
ν measurement noise

To process radar measurement data extended Kalman
filter has been used. The Jakobian matrix is given in
equation 34. The first derivatives of the reference map with
respect to north and east position cannot be calculated
analytically. The derivatives are approximated using the
discrete height data of the reference map.

(34) H =

(

∂hmap

∂xn

,
∂hmap

∂xe

,−1, 0, ...

)

Following, extended Kalman filter update step can be
processed.̂r denotes the expectation of the current radar
height measurement.

K = P
−

H
T · (HP

−

H
T + R)−1(35)

~̂x+ = ~̂x− + K · (~r− r̂)(36)

P
+ = (I − KH) · P−(37)

Standard terrain referenced navigation system with
nadir point measurements or directional measurements is
explained in [6] and [7].

6. SIMULATION RESULTS

Various flight scenarios has been simulated to analyse
SAR/INS position accuracy. Additionally a combination
of SAR/INS with standard terrain referenced navigation
has been implemented using the nadir model [6].

6.1. ERROR CHARACTERISTIC OF SAR/INS SYS-
TEMS

Figure 4 shows the position error at different SAR
feature update rates using a navigation grade IMU. As
expected the navigation errors will become smaller if
feature points occur more often. In practise update rates
will depend on the occurrence of unambiguous and well
visible features. As shown in figure 4 a feature update
interval in the scale of a few minutes is required.

On the other hand navigation solution also depends
on the position of the features relative to the aircraft.
To ensure accurate positioning of the aircraft one needs
mathematically independent measurements. This can be
achieved by features at different depression angles. This
leads to a different geometry and therefore to mathemat-
ically independent measurements.

SAR feature updates are modelled as point fixes with
measurement errors specified below. Map errors are as-
sumed to be 3 meters rms in horizontal and vertical direc-
tion. Additionally it is assumed that feature matching can
be done to an accuracy of 7 meters which typically cor-
responds to the width of a street segment used as feature.

σf,h = 3m Standard deviation of horizon-
tal map errors

σf,v = 3m Standard deviation of vertical
map errors

σa = 7m Standard deviation of matching
errors

Figure 5 and figure 6 show velocity error and attitude
error, respectively. Velocity also depends on the feature
update rate, whereas attitude error is relatively indepen-
dent. It is shown, that it is possible to aid position as well
as velocity estimation three dimensionally by SAR/INS
systems. Height estimation is critical in SAR/INS systems.
Therefore barometric altimeter measurements are used
additionally in all simulation runs.

6.2. SAR/INS in combination with terrain referenced
navigation

Figure 7 shows simulation results of the desired flight
using TRN updates only and SAR/TRN with feature
updates each 120 seconds. Due to the extreme smoothness
of the terrain underneath the aircraft at the end of the
flight TRN cannot deliver reliable position information.
SAR feature measurements avoid divergence of the filter
and ensure accurate horizontal position estimation. On the
other hand TRN measurements decrease vertical position
errors compared to a SAR/INS system. TRN and SAR
show different characteristics such that both measurements
profit from each other. Figure 8 shows simulation results
of a SAR/TRN combination in comparison to TRN up-
dates only. Maximum position errors before a next feature
detection are decreased in case of reasonable rough terrain.

Radar altimeter measurements ensure accurate height
information and are able to autonomously aid the navi-
gation solution in regions of rough terrain by comparing



terrain height measurements to a reference height map
whereas SAR prevents increasing navigation errors over
smooth terrain, where manmade features like crossroads
commonly occur more often.

The combination of SAR/INS and TRN turned out
to be optimal due to the different sensor characteristics.
The navigation system does not rely on TRN during
flights over smooth terrain but on SAR updates. Therefore,
less accurate TRN systems are required in a combined
TRN/SAR/INS navigation system. Low cost radar altime-
ter and standard DTED level 1 height data is suitable.
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Figure 4. Position error at different feature detection rates
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Figure 5. Velocity error at different feature detection rates
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Figure 6. Attitude error at different feature detection rates
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7. CONCLUSION

Simulation results show that is possible to aid posi-
tion by integrating SAR measurements using sigma-point
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Figure 8. Position error of SAR/INS and SAR/TRN/INS

Kalman filter. Feature detections each two minutes still
ensure stable position estimation.

The combination of SAR/INS and even low cost TRN
is optimal due to the complementary characteristics. TRN
aids the position during flights over regions of reasonable
rough terrain whereas SAR prevents increasing position
errors over smooth terrain where manmade features e.g.
crossroads occur more often.
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