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Abstract—The paper shows an analytical derivation of the
cross correlation function (CCF) of two AltBOC modulated
signals, which differ in their data bits sequences (have different
navigation messages) or in their secondary code phases. The final
equation for CCF is general in such ways, that the arbitrary
integration time and data bits sequences combinations can be
considered. Such formula thus covers all possibilities which are
needed for the tracking loop detector design. The theoretical
results were approved with a numerical simulation.

The structure of the new delay loop detector based on the
results of discussion is proposed. The tracking algorithms based
on the proposed structure therefore fully utilize capability of the
Galileo wideband E5 signal.

Index Terms—Galileo, E5 signal, AltBOC multiplex

I. INTRODUCTION

THE NEW European satellite navigation system Galileo
promises remarkable performance by means of the wide-

band E5 signal.
The Galileo E5 signal is formed through AltBOC multiplex,

which gathers four input signals (two pilots and two data
signals) to form the output wideband complex E5 signal. Such
modulation scheme is rather complicated and has no similarity
in currently deployed GNSS (GPS, GLONASS). Therefore the
notably modified signal tracking algorithm must be used to
utilize full E5 signal capability.

There are some works which solve the E5 signal tracking
problem and propose tracking algorithms (e.g. [1]). Unfortu-
nately, such tracking algorithms do not fully utilize wideband
E5 signal capability, mostly due to their simplifying assump-
tions (e.g. using AltLOC [Linear offset carrier] counterpart
instead of full-valued AltBOC). Our work overcomes this lack
and presents the tracking algorithm based on correctly derived
E5 signal characteristics.

The loop detector can be understood as a core of the
tracking loop. The tracking performance is bounded with loop
detector characteristics. Since the loop detector characteristics
are formed with the cross-correlation function (CCF) between
the received signal and the generated replica, the E5 CCF is
the focus of our attention.

The E5 CCF has significant dependency on data bits se-
quences in both the received signal and the generated replica
which are carried on E5aI and E5bI AltBOC input compo-
nents. The bits disagreement in the received signal and the
replica has a negative effect on the CCF maximum height
and therefore also on the tracking performance. The similar

effect has also the secondary codes nonsynchronization. The
described situation becomes more complicated with the inte-
gration time increase since more data bits (secondary code
chips) combinations should be taken into a consideration.

II. THEORETICAL BACKGROUND

The property of navigation signal should ensure effective
ranging measurement and also minimal interference with nav-
igation signals from other satellites. Therefore the navigation
signals are based on pseudorandom sequences (codes) which
ensure proper correlation characteristics for ranging measure-
ment and also orthogonality with other navigation signals.

The signal correlation properties will be main topic of
this section. The goal is to introduce appropriate system of
correlation characteristics which can be used for a complicated
navigation signal analysis.

A. Correlation function definitions

The pseudorandom sequence is discrete time periodic signal.
It will be shown, that the correlation characteristics definition
is more convenient if it is based on finite sequence than on
periodic one. Such finite sequence is defined as a just one
period of its periodic counterpart.

For two real finite sequences a1[k] and a2[k] with length N
(the a1[k] and a2[k] are zero outside the interval 〈0, N − 1〉)
we can define so called linear cross correlation function (CCF)
as follow

ρa,12[m] =
∞∑

k=−∞
a1[k] a2[k + m] (1)

Since the sequences have finite length the CCF is finite too
(the ρa,12[m] is zero outside interval 〈−N + 1, N − 1〉). The
so called circular CCF is defined as

Ra,12[m] =
1
N

N−1∑

k=0

ä1[k] ä2[k + m] (2)

where äi[k] =
∑∞

l=−∞ ai[k − lN ] is a periodic extension
of finite sequence ai[k]. The circular CCF is periodic with
the identical period N as the periodic extension äi[k]. The
significant property of these CCF definitions is the fact that



we can easily derived Ra,12[m] from ρa,12[m] (but contrary
way is not possible)

Ra,12[m] =
1
N

∞∑

l=−∞
ρa,12[m− lN ] (3)

It is also important to outline the connection with contin-
uous time signals and their correlation characteristics. The
continuous time signal ai(t) derived from the finite sequence
ai[k] can be constructed as ai(t) =

∑N−1
k=0 ai[k]gTc(t− kTc)

and its periodical extension as äi(t) =
∑∞

l=−∞ a(t − lTc) =∑∞
k=−∞ äi[k]gTc(t− kTc). Since one element of pseudoran-

dom sequence is usually denoted as chip the constant Tc is
than one chip duration. Through the pulse gTc(t) we can
easy consider impact of finite channel bandwidth. In ideal
case, when we can consider infinite channel bandwidth the
rectangular shape with duration Tc is used.

In similar manner as in sequence case we can define linear
and circular CCF for continuous time counterpart as following

ρa,12(τ) =
� ∞

−∞
a1(t) a2(t + τ) dt (4)

Ra,12(τ) =
1

NTc

� NTc

0

ä1(t) ä2(t + τ) dt (5)

The important is a mutual relation between particular CCF
definitions. It can be derived (see [3] for more details)

ρa,12(τ) =
∞∑

m=−∞
ρa,12[m]ρgTc

(τ −mTc) (6)

Ra,12(τ) =
1

NTc

∞∑
m=−∞

ρa,12(τ −mNTc) =

=
1
Tc

∞∑
m=−∞

Ra,12[m] ρgTc
(τ −mTc) (7)

where ρgTc
(τ) is the autocorrelation function (ACF) of gTc(t)

defined as
�∞
−∞ gTc(t) gTc(t + τ) dt. In ideal case when the

infinite channel bandwidth is considered, the ρgTc
(τ) has

triangular shape.
The remarkable consequence of previous equations is the

fact, that the ρa,12[m] can be considered as the most universal
characteristic in the case of the correlation properties inves-
tigation. From the ρa,12[m] we can easily calculate all other
CCF – Ra,12[m], ρa,12(τ) and Ra,12(τ).

B. Ideal pseudorandom sequence

For navigation signal description we need some appropriate
approximation of pseudorandom sequences. The correlation
function of sequence depends on sequence itself, this depen-
dency can cause some inconvenience during analytical deriva-
tion. Therefore we introduce the ideal pseudorandom sequence
as a hypothetical sequence defined only by its correlation
characteristics. Correlation properties of such sequence well
represent all pseudorandom sequences with length N .

primary code

b[1]b[0]

primary code

b[M − 1]

investigation interval

secondary code
chip

secondary code

a[1]

a[N − 1]

period

a[0]

e[0]

e[1]

e[N − 1]

e[N ]

e[MN − 1]

resulting code

(tiered code)

Figure 1. The tiered sequence construction

The CCF of ideal pseudorandom sequence is defined as
follows

ρI,ij [m] =

{
Nδ[m] for i = j,

0 otherwise
(8)

where δ[m] is the unit impulse function.

C. Tiered sequence

The tiered sequence is published in Galileo ICD [2]. The
construction of tiered sequence offers a technique which
enables the combination of two pseudorandom sequences to
get sequence with large length (period). The tiered sequence
generation is based on two independent sequences: the primary
sequence a[k] with length N and the secondary sequence b[k]
with length M . The resulting tiered sequence, we denote it as
e[k], has length MN .

The construction of tiered sequence e[k] is shown in Fig. 1.
The a[k] is M times repeated and lined up. The i-th a[k]
segment with length N is then multiplied by i-th chip of b[k].

It is possible to derive a formula which computes CCF
of tiered sequences based solely on CCF of its primary and
secondary sequences (detailed derivation is also in [3])

ρe,12[m] =
∞∑

l=−∞
ρb,12[l] ρa,12[m− lN ] (9)

Using this equation together with (3) we can also get

Re,12[m] =
1
N

∞∑

l=−∞
Rb,12[l] ρa,12[m− lN ] (10)

The other CCF can be computed according equations in
section II-A.

The equations (9) and (10) offer a suitable tool for the
complicated navigation signals analysis. Of course, the naviga-
tion signal structure must allow its decomposing into separate



sequences and to arrange them according Fig. 1. Then we
can investigate the separated sequences independently and use
the (9) and (10) together with equations from section II-A for
this complicated navigation signal characteristics. The outlined
method can be generalized for arbitrary number of tiers.

III. GALILEO E5 SIGNAL

A. Galileo E5 signal parameters

The wideband Galileo E5 signal is composed using AltBOC
multiplex from four independent signals which are usually
denoted as E5aI, E5aQ, E5bI and E5bQ. Each of this multiplex
inputs has pseudorandom sequence constructed as a tiered
code. Signals E5aI and E5bI are further BPSK modulated
with navigation message, signals E5aQ and E5bQ have no
modulation and therefore are called as pilot signals. The
parameters of the E5 multiplex inputs are gathered in Tab. I.

B. AltBOC multiplex

Due to the comfortable mathematical description we denote
AltBOC multiplex inputs as ei[k] where index stands for ith
multiplex input (1 E5aI, 2 for E5aQ, etc.) Apart inputs ei[k]
the multiplex output is also based on two subcarriers denoted
as scs[k] and scp[k]. However, these subcarriers are quicker
than ei[k]. Therefore to satisfy right timing relation the inputs
ei[k] must be oversampled by S = 12, where the S is the
number of subcarrier samples per one primary sequence chip.
The oversampled inputs we denote as εi[k]. The multiplex
output is defined in Galileo ICD [2] with equation (3). We
adjust this definition to agree with our notation. The AltBOC
output sequence can than be written as

E5[k] =
√

P

2
√

2
×

{(
ε1[k] + jε2[k]

) (
scs[k]− jscs[k − 2]

)
+

+
(
ε3[k] + jε4[k]

) (
scs[k] + jscs[k − 2]

)
+

+
(
ε1[k] + jε2[k]

) (
scp[k]− jscp[k − 2]

)
+

+
(
ε3[k] + je4[k]

) (
scp[k] + jscp[k − 2]

)}
(11)

where P stands for E5 [k] signal power. The bar signal ε̄i[k] for
ith input branch is computed as a multiplication of all other
inputs, e.g. ε̄1 = ε2[k]ε3[k]ε4[k].

IV. GALILEO E5 SIGNAL CORRELATION
CHARACTERISTICS

In DLL detector the mutual signal power between the
received signal and the locally generated replica is computed
over a fix integration time interval TI . In mathematical de-
scription the mutual power for arbitrary signal delay can be
expressed using following CCF

RsE5 ,rE5 (τ) =
1
TI

�
TI

sË5 ∗(t) rË5 (t + τ) dt (12)

The expression of this characteristic in suitable form is there-
fore primary goal of this section.

A. Problem description

The typical choice of the value TI is interval which
corresponds to integer multiple of primary sequence period
duration. This integer multiple we denote as M (since primary
code period duration is 1ms, then TI = M ms). Thus, in this
section, M is not necessarily a period of secondary sequence
but just a number of secondary sequence chips which are
involved into integration over TI .

The M is usually smaller than secondary sequence period.
Consequently it cannot be ensured, that the received signal and
the generated replica are based on identical chips of secondary
sequences. It is necessary to distinguish them. The secondary
sequence subset used in the received signal we denote as
sbi[k], in the locally generated replica as rbi[k]. To simplify
the problem the navigation data bits can be included into
corresponding bi sequences without lost of generality (thus bi

for i ∈ {1, 3} is considered as secondary sequences multiplied
by data bits). The received signal and generated replica can
also differ in their powers, we denote them as sP and rP .

We use the outlined concept from section II-A for solving
(12). There was stated, it is sufficient to compute CCF from
discrete signal representation, in our case from E5 [k]. Due
to the subcarrier in AltBOC multiplex, the discrete step k
cannot correspond to one chip duration Tc but smaller interval
Ts. Since the ratio Tc/Ts is S and the period of primary
sequence is N and number of secondary sequence chips used
for integration is M , the CCF is computed over interval MNS

RsE5 ,rE5 [m] =
1

MNS

MNS−1∑

k=0

sË5 ∗[k] rË5 [k + m] (13)

The method to solve (13) is based on decomposition of
RsE5 ,rE5 [m] terms on the interval MNS into several tiers,
so correlation properties of each tier can be investigated
separately and resulting RsE5 ,rE5 [m] can be determined using
rules from section II-C. The CCF (12), if needed, can be then
easily constructed from (13) for arbitrary shape of pulse gTs(t)
using (7).

B. Sequences decomposition

After the (11) expansion we get terms in form of the
multiplication εi or ε̄i with one of the subcarriers scs or scp.
We will do now some modification to transform these terms
into suitable form for expressing them as tiered sequences.

1) AltBOC multiplex inputs decomposition: The AltBOC
multiplex input sequence in ith branch is constructed as tiered
sequence from ai[k] with length N in lower tier and bi[k]
with length M in upper tier, see fig. 1. Formally ei[k] can be
expressed as

ei[k] =
M−1∑

l=0

bi[l] ai[k − lN ] (14)

To satisfy the time relation with subcarrier, the ei[k] must be
oversampled by S. Such oversampled sequence we denote as
εi[k]



primary seq. secondary seq. data
N [chip] 1/Tc [chip/s] NTc [ms] M [chip] 1/Td [sym/s] Td [ms]

E5aI e1 10230 1.023 106 1 20 50 20
E5aQ e2 10230 1.023 106 1 100 − −
E5bI e3 10230 1.023 106 1 4 250 4
E5bQ e4 10230 1.023 106 1 100 − −

Table I
GALILEO E5 ALTBOC MULTIPLEX INPUT SIGNALS PARAMETERS

εi[k] =
M−1∑

j=0

bi[j]
N−1∑

l=0

ai[l] RectS [k − lS − jNS] (15)

where RectS [k] = Us[k]−Us[k−S] is the discrete rectangular
pulse with length S, Us[k] is the discrete unit step function.
The formulas for ēi[k] and ε̄i[k] can be expressed in identical
manner, only āi[k] and b̄i[k] have to be used.

2) Subcarriers decomposition: Sequences scs[k] and scp[k]
are defined in Tab. 5 in Galileo ICD [2]. The scs[k] represent
coarsely quantized cosine waveform. The scp[k] is designed
in such way to ensure together with ε̄i[k] a constant envelope
of AltBOC output E5 [k] (this correspond with last two line in
equation (11)).

Sequences scs[k] and scp[k] are periodic with period 8. To
use the proposed method from sec. II-C the finite sequences,
which cover just one chip of ai[k], must be formed. Therefore
we define si[k] with length S = 12 as follows

s1[k] = scs[k]
(
Us[k]−Us[k − S]

)
(16)

s2[k] = scs[k − 2]
(
Us[k]−Us[k − S]

)
(17)

s3[k] = scp[k]
(
Us[k]−Us[k − S]

)
(18)

s4[k] = scp[k − 2]
(
Us[k]−Us[k − S]

)
(19)

The si[k] and their relations to harmonic waveforms are clear
from Fig. 2.

The original ICD subcarriers scs[k] and scp[k] can be from
si[k] formed only with help of sequence z[k] = (−1)k. E.g.
scs[k] can be using s1[k] expressed as

scs[k] =
MN−1∑

i=0

z[i]s1[k − iS] (20)

See Fig. 3 for better understanding. Thus scs[k] was decom-
posed into two tiers, z[k] in upper and s1[k] in lower. Similar
decomposition can also be done for the scs[k− 2], scp[k] and
scp[k − 2].

Now we will show that z tier has no impact on correlation
property and therefore can be omitted. The tier z is on the
same level as ai[k] (the one ai[k] chip duration correspond
with z[k] element duration). We assume, the ai[k] can be well
approximated with ideal pseudorandom sequence. The CCF of
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Figure 2. Construction of finite subcarrier sequences si[k]

s1[0]

s1[1]

z[0] = 1 z[1] = −1 z[2] = 1

s1[k − 2S](−1)s1[k − S]s1[k]

z[k]

s1[k]

scs[k]

s1[S − 1]

scs[S − 1]

scs[1]

scs[0]

Figure 3. Decomposition of scs[k] into z[k] and s1[k]

ai[k]z[k] and aj [k]z[k] is given as follows

∞∑

k=−∞
ai[k](−1)kaj [k + m](−1)k+m =

= (−1)m
∞∑

k=−∞
ai[k]aj [k + m] =

= (−1)mρa,ij [m] = ρa,ij [m] (21)

The last equality is a consequence of (8). Thus, CCF of
ai[k]z[k] and aj [k]z[k] is identical with CCF of ai[k] and
ai[k].

C. Subcarrier correlation matrix

The CCF (13) will be certainly depended on ACF/CCF
of our defined subcarriers si[k]. We compute them now and



show some their properties which will be helpful during next
simplification.

For better manipulation with the subcarriers si[k] we ar-
range them into row vector s[k] = (s1[k], s2[k], s3[k], s4[k]).
Then the subcarriers ACF/CCF matrix can be defined

ρs[m] =
∞∑

k=−∞
sT [k] s[k + m] =

=




ρs,11[m] · · · ρs,14[m]
...

. . .
...

ρs,41[m] · · · ρs,44[m]


 (22)

The subcarriers can be divided into two groups according
their symmetry. Let the first group contains si[k] with property
si[k] = si[S − k− 1] (it is valid for i = 1 a 3), second group
si[k] with si[k] = −si[S − k − 1] (valid for i = 2 and 4).
It can be proved, that as a consequence of this symmetry we
can write for ACF/CCF

ρs,ij [m] = ρs,ji[m] = ρs,ji[−m]. (23)

in case of si and sj are from the same group and

ρs,ij [m] = −ρs,ji[m] = ρs,ji[−m] (24)

in case of si and sj are from the different groups.
Such information is useful during a simplification. Since

some elements in (22) matrix are identical or opposite, the
result will depend on fewer number of ρs(ij)[m] terms.

The computed ρs(ij)[m] are shown in Fig. 4 and their exact
values in Tab. II.

D. Outline of CCF derivation

The E5 [k] can be expressed as a sum of 16 terms and each of
these terms can be further expressed as tiered sequences with
ei[k] (or ēi[k]) in the upper tier and sj [k] in the lower tier. For
(13) evaluation we multiply the sË5 ∗[k] with the rË5 [k + m]
and after product expansion we get 256 terms in following
form
√

sP

2
√

2

√
rP

2
√

2

MNS−1∑

k=0

sε̈i[k] rε̈j [k + m] s̈k[k] s̈l[k + m] (25)

Such term represents a circular CCF between sεi[k]sk[k] and
rεj [k]sl[k]. Using (10) the equation (25) can be rewritten as
follows

√
sP

2
√

2

√
rP

2
√

2
1
S

∞∑

i=−∞
Rsei,rej [i] ρs,kl[m− iS] (26)

Note, the ei is not necessary just one of the {e1[k], . . . , e4[4]}
but can also be one of the {ē1[k], . . . , ē4[4]}. Similar notes
also concern the symbols ai[k] and bi[k].

The reduction of total terms number can be achieved after
considering the ρs,kl[m] symmetry properties which were
expressed with equations (23) and (24). Then the number of
terms reduces 208.

Now we focus on the Rsei,rej [m]. Since ei[k] is tiered
sequence constructed from bi and ai the Rsei,rej [m] can be
using (10) rewritten as follows

Rsei,rej [m] =
1
N

∞∑

i=−∞
Rsbi,rbj [i] ρa,ij [m− iN ] (27)

We assume, that the ai[k] can be well approximated with ideal
pseudorandom sequence defined in sec. II-B. Then the ρa,ij [m]
has property according (8). Thus, due to the noncorrelation of
two different primary sequences the most of the terms are zero
and total number of terms reduces to 24. The nonzero terms
have a form

Rsei,rei [m] =
∞∑

i=−∞
Rsbi,rbi [i] δ[m− iN ] (28)

Substituting (28) into (26) we get

√
sP

2
√

2

√
rP

2
√

2
1
S

∞∑

i=−∞

∞∑

j=−∞
Rsbi,rbi [j] δ[i− jN ] ρs,kk[m− iS]

(29)
which simplifies to

√
sP
√

rP

8
1
S

∞∑

j=−∞
Rsbi,rbi [j] ρs,kk[m− jNS] (30)

E. Final formula

Outlined procedure was accomplished in the Mathematica
software with following final issue. The real part of the
RsE5 ,rE5 [m] can be expressed as

Re
{RsE5 ,rE5 [m]

}
=
√

sP
√

rP

8
1
S
×

{

∞∑

j=−∞

(
Rsb1,rb1 [j] +Rsb2,rb2 [j] +Rsb3,rb3 [j] +Rsb4,rb4 [j]

)
×

×
(
ρs,11[m− jNS] + ρs,22[m− jNS]

)
+

∞∑

j=−∞

(
Rs̄b1,r̄b1 [j] +Rs̄b2,r̄b2 [j] +Rs̄b3,r̄b3 [j] +Rs̄b4,r̄b4 [j]

)
×

×
(
ρs,33[m− jNS] + ρs,44[m− jNS]

)}
(31)

the imaginary part of the RsE5 ,rE5 [m] can be expressed as

Im
{RsE5 ,rE5 [m]

}
=
√

sP
√

rP

4
1
S
×

{

∞∑

j=−∞

(
Rsb1,rb1 [j] +Rsb2,rb2 [j]−Rsb3,rb3 [j]−Rsb4,rb4 [j]

)
×

× ρs,12[m− jNS]+
∞∑

j=−∞

(
Rs̄b1,r̄b1 [j] +Rs̄b2,r̄b2 [j]−Rs̄b3,r̄b3 [j]−Rs̄b4,r̄b4 [j]

)
×

× ρs,34[m− jNS]
}

(32)
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Figure 4. The charts of the subcarriers ACF/CCF
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Table II
THE VALUES OF THE SUBCARRIERS ACF/CCF

F. Formula using and some consequences

One of the most important consequences is the ACF formula
of the AltBOC signal. In this case there is no difference
between sbi[k] and rbi[k] and thus Rsbi,rbi [m] = 1 for
∀m. Similarly sP = rP = P . It is clear from (32), the
imaginary part is zero. Since the (31) contains sum of four
Rsbi,rbi [m] = 1 and S = 12, the front constant can be
evaluated as

√
P
√

P
8

1
124 = P

24 and ACF is then given

RE5 [m] =
P

24

∞∑

j=−∞

4∑

i=1

ρs,ii[m− jNS] (33)

The RE5 (τ) can be constructed from RE5 [m] using (7). The
RE5 (τ) is shown in Fig. 5. The ideal situation with the infinite
bandwidth channel is considered.

The equations (31) and (32) give unique possibilities for an
impact investigation of both secondary code nonsynchroniza-
tion and navigation data bits uncertainty. Let the integration
time is restricted on 1ms (i.e. M = 1). Since AltBOC multi-
plex has four inputs branches there are sixteen possibilities of
secondary sequences (dis)agreement in total and thus sixteen
possible shapes of CCF. All of them are shown in Fig. 6,
the secondary sequence agreement (disagreement) in particular
AltBOC branch is indicate with 1 (-1) in charts title.

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

τ in [chips]

AltBOC(15,10)
BOC(15,10)
BPSK(10)

Figure 5. The ACF of the Galileo E5 AltBOC signal and its confrontation
with ACF of other GNSS counterparts. The RE5 (τ) is computed under
assumptions: P = 1, the pulse gTs (t) is rectangular with Ts duration,
consequently ρgTs

(τ) has triangular shape. This corresponds with infinite
channel bandwidth.
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Figure 6. The CCF of Galileo E5 AltBOC signals for various secondary sequences (dis)agreement. Real part of CCF is drawn with solid line, the imaginary
part with dot-and-dash line. The charts are computed under assumptions: integration time TI = 1ms, sP = rP = 1, infinite channel bandwidth

In case, where the secondary sequence synchronization is
done, there are still four possibilities of CCF shape due to
navigation data bits uncertainty in two AltBOC input branches.
This corresponds with the quarter of Fig. 6. Thus, the DLL
detector which fully utilizes wideband E5 AltBOC signal
processing has to compute the correlation for all data bits
possibilities (have to suppose both data bits polarity in AltBOC
input branches). Then the detector logic should decide which
correlator outputs are correct and use them for NCO driving.

Finally, we add that the Fig. 5 and Fig. 6 were numerically
computed in Matlab and confronted with analytically derived

formula in Mathematica. The perfect fit proves the correctness
of both equations (31) and (32)

V. CONCLUSION

This paper presents the analytical derivation of the CCF
of Galileo E5 AltBOC signals for arbitrary difference in
secondary sequences chips (and also navigation data bits un-
certainty). The derivation was based on signal decomposition
into several tiers and their separated investigation. As a conse-
quence the derived formulas depend on secondary sequences
CCF and subcarriers CCF. The matrix of CCF subcarriers



was evaluated and was provided in graphic and tabular form
for comfortable using. The only work to do for E5 AltBOC
CCF evaluation is a computation of secondary sequences CCF.
Since the secondary sequences length involved into integration
is usually small, such computation can be done easy.

The straightforward result issued from derived formulas is
ACF of Galileo E5 AltBOC signal. This ACF was computed
and shown with other connected GNSS counterpart ACF into
common chart.

The all CCF possibilities for 1ms integration time were
shown. This provides base information how to design the
DLL detector which fully utilize E5 signal bandwidth. Since
the knowledge of navigation data bits cannot be supposed,
there are four possible shapes of CCF (the correct secondary
sequence synchronization is assumed). Only one of them
should be use for the detector output computation.
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