Computer Modeling of
Loran-C Additional
Secondary Factors

Janet Blazyk, MS

David Diggle, PhD

Avionics Engineering Center
Ohio University, Athens, OH

ILA-36 Orlando, FL October 2007




ol
BALOR Computer Program

= Models Loran-C propagation over ground.
= Computes field strength, ASF, and ECD.

m Considers terrain elevation and ground
conductivity.

m Developed by Paul Williams and David Last,
University of Wales, Bangor, UK.

m The name “BALOR” comes from BAngor
LORan.

= The Avionics Engineering Center at Ohio
University took over maintenance of the BALOR
software in March 2005.
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Factors Affecting Loran-C Propagation

Primary Factor (PF) — accounts for the speed of
propagation through the atmosphere, rather than through
a vacuum.

Secondary Factor (SF) — accounts for the time difference
for a signal traveling over a spherical seawater surface,
rather than through the atmosphere.

Additional Secondary Factor (ASF) — accounts for the
time difference for a signal path that is at least partly
over terrain, rather than all seawater, as well as any
other factors that may come into play.

ASFs are affected by
Ground conductivity
Changes In terrain elevation
Receiver elevation
Temporal changes (seasons, time-of-day, local weather)

. Avionics

ﬁ Engineering ILA-36 Orlando, FL October 2007

Center



o

US Ground Conductivity Map
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Phase of attenuation in relation to conductivity
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Additional secondary factor in relation to conductivity
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Sample BALOR plot of predicted ASFs

= BALOR predicts
ASFs that are
corrections to single-
station TOA values.

m The transmitter here
IS Carolina Beach.

= Note how ASF values
are very low over the
ocean, but generally
higher and more
variable over land.
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Effective earth radius

= Except at very low frequency, radio waves are
refracted by the atmosphere to some extent.

= If we assume a linear vertical lapse rate, then
this effect may be modeled by multiplying the
actual earth radius by some factor, which we will
call the effective earth radius factor (eerf).

= The traditional value for the eerf is 4/3, but the
value should probably be smaller for lower
frequencies such as the Loran frequency.

= (The inverse, the vertical lapse rate, is also
commonly used. In this case, the traditional
value is clearly 0.75.)
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Effective Earth Radius Factor
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Effect of effective earth radius on phase delay
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Height Gain Factor

= This factor comes into play in two ways:

O First, it is part of the solution for irregular terrain — if a
point is on a hill, it is as if it were a raised transmitter
or receiver.

1 Second, if we are actually modeling an elevated
receiver, say in an aircraft, then we need to apply the
height gain factor again to the ground-based solution.

= The height gain factor is a complex function of
height, distance, and ground conductivity.
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Relative magnitude of attenuation vs. receiver height
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Phase offset vs. receiver height
ae=1.14a, sigma=5S/m, epsilon=80
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Relative magnitude of attenuation vs. receiver height
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Phase offset vs. receiver height
ae=1.14a, sigma=0.001S/m, epsilon=15
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“Worst Case Path”
Examples
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“Worst Case Path”

In their 1979 report, Burt Gambill and Kenneth Schwartz described a path
along the radial from the Loran transmitter at Searchlight to Fort Cronkhite,
near San Francisco Bay.
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|

Because of the extremes in
terrain along the path, they . % Cronkfite

called it the “Worst Case
Path”, or WCP. \\

36°N \
It makes a nice example, so rehiight
we will make use of this
path as well. . R
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Terrain Elevation over “Worst Case Path”
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Ground Conductivity over “Worst Case Path”
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Terrain Smoothing over “Worst Case Path”
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Effect of Terrain Smoothing over WCP
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Effect of Recelver Altitude on ASFs over WCP
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Effect of Recelver Altitude on ASFs over WCP
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Terrain Contributions to ASFs over WCP
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Loran-C Correction Tables

= Published by NOAA

m Show ASF corrections to TD values for
master-secondary pairs

m Cover US coastal confluence zones

= Data represents the results of a computer
program, adjusted to fit measured data
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Sample Loran-C correction table data
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Terrain in the US West Coast region

Ground conductivity Terrain elevation
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Calculated ASFs for Fallon and Searchlight
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Correction table data vs. BALOR results
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Flight path from Ohio toward Carolina Beach
transmitter is Carolina Beach; aircraft is King Air; 8/29/07
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Comparison of measured and calculated ASFs

for flight from Ohio toward Carolina Beach
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Approach to Allaire Airport, Belmar/Farmingdale, NJ

transmitter is Carolina Beach, aircraft is King Air; 4/10/07
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‘ Comparison of measured and calculated ASFs
from Carolina Beach during approach to Allaire, NJ
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Conclusions

Further comparisons between BALOR and
actual measured data are required.

It may not be possible to obtain extremely
accurate ASF predictions, due to lack of detall
and possible bias in the conductivity database.

Nevertheless, we should be able to eliminate
any bias or scale errors from the BALOR model
itself.

Even in its current state, BALOR is a useful tool
for large scale mapping of predicted ASFs.

More accurate results could be produced by
adjusting the BALOR maps to fit measured data
points.
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