A Potential Role for eLoran in Aviation Surveillance

James Carroll, Ph. D.
US DOT/RITA/Volpe Center

Presented at the
International Loran Association
35th Annual Convention and Technical Symposium
Mystic Marriott Hotel and Spa, Groton, CT

October 24, 2006
Rationale for Analysis and Selection of a GPS Backup Strategy

• Automatic Dependent Surveillance-Broadcast (ADS-B) has been identified by the FAA as a key element of the Next Generation Air Traffic System (2025)

• ADS-B is a GPS-based surveillance technology that enables equipped aircraft or surface vehicles to broadcast their identification, position, altitude, velocity, and other information

• FAA’s Joint Resources Council (JRC) identified a viable backup strategy as a key issue for ADS-B implementation (Sep 05). Backup architecture to be resolved before next JRC meeting (Feb 07)

• ADS-B technical Work Group tasked to select at least one backup strategy that meets proposed rule, and perform trade space & sensitivity analyses (Nov 06)
Technical Team Charter

- Recommend an approach for mitigating the impact of a loss of GPS on future NAS surveillance (ADS-B)
- **Methodology entails:** GPS vulnerabilities and fail impacts, evaluation criteria, candidate mitigation strategies, sensitivity analysis, recommendation

- **GPS failure scenario**
 - Focuses on unintentional and planned (testing) interference; SPS L1 only
 - Nominal outage: GPS unusable as a position source for ADS-B within a 40-60nm radius for 3-4 days; outage can occur anywhere in the NAS
 - Must also consider impacts of loss of positioning due to single-aircraft avionics failures and RAIM outages

- **Evaluation Metrics**
 - Operational capability & coverage
 - Technical maturity
 - Independence
 - Flexibility/agility
 - Global interoperability
Assumptions (by 2020)

• General
 – GPS outages (or degradations) due to interference, RAIM holes, or single-aircraft avionics failures must be considered
 – Assumed nominal outage: 40-60nm radius, 3-4 days

• Positioning Infrastructure
 – GPS L5 will be available
 – 21 “healthy” GPS satellites with 0.98 probability
 – Dual frequency WAAS can be available
 – 27 operational Galileo satellites + 3 spares in orbit by 2015, with 3 frequencies for aviation (E5a, E5b, & L1)
 – eLoran ground infrastructure, including database for location-based conductivity factors (ASFs), can be in place and operational
 – DME/DME navigation capability will be supported at least in en route airspace (24K+ feet, Rockies; 18K+ feet elsewhere), without reverting to inertial

• Surveillance Systems also are addressed
Potential Backup Technologies and Methods (from preliminary Phase)

• Surveillance
 – Secondary Surveillance Radar (SSR)
 – Primary Surveillance Radar
 – Passive multilateration (listen only)
 – Active multilateration (interrogate/reply)

• Navigation
 – DME/DME/IRU
 – DME/DME
 – eLoran
 – IRU only
 – Satellite Navigation (SBAS, L5, Galileo)
 – VOR/DME, LOC/DME, MLS/RNAV

• Procedural Separation
Initial, Qualitative Assessment

• Technologies/methods fall into one of the following categories:
 – **Meets all minimum criteria for at least one airspace type**
 • Secondary Radar, Primary Radar, Passive and Active Multilateration
 – **Meets most criteria, with uncertainty regarding certain metrics**
 • DME/DME/IRU, SSR, eLoran, Satellite Navigation Only
 – **Does not or will not meet minimum criteria**
 • IRU Only, VOR/DME, LOC/DME, MLS/RNAV, Procedural Separation

• Alternatives assessed to date are based on technologies that fall into the first category
 – **A set of eight “strategies,” most involving more than one technology, were postulated**
Strategies Involving SSR, DME/DME/IRU and eLoran

• **Strategy 5**
 – SSR in high density terminal areas and used for all aircraft in event of GPS disruption
 – DME/DME/IRU (AT) and eLoran (GA) provided for medium density areas (Class A airspace, and Class C/D above current CENRAP floor)
 – eLoran (GA) provided for other areas

• **Strategy 6**
 – SSR in high density terminal areas and used for all aircraft in event of GPS disruption
 – DME/DME/IRU with SATNAV (AT) and eLoran (GA) provided for medium density areas
 – SATNAV (AT) and eLoran (GA) provided for low density areas
DME/DME En Route 0.6 NM (95%) Coverage (18000 MSL Altitude)

- Redundant coverage (no critical facilities)
- Single critical facility
- Two critical facilities
- No coverage

Current coverage (with range dependency)

Current coverage if range dependency eliminated

ILA-35, 10/24/06
eLoran Horizontal Accuracy, En Route Altitudes

2DRMS Horizontal Accuracy in meters for all stations available, Clipping Credit of 10dB

3 NM separation

5 NM separation

U.S. Department of Transportation
Research and Innovative Technology Administration

ILA-35, 10/24/06
eLoran Operational Capability

- Multi-year Congressional-directed program to evaluate Loran capability for aviation
 - 2004 FAA Report of Loran Integrity and Performance Panel concluded RNP-0.3 performance in CONUS is feasible; correction factors (ASFs) needed
 - Variety of flight tests thus far validates report
- Conservative model predictions state RNP 0.3 capability with current infrastructure in 95% of CONUS
- Conductivity correction factors (ASFs) will be needed for 5 nm separation in medium density
 - At least one correction per airport
 - Corrections would be published and maintained in a database
 - May need additional corrections for seasonal variation and effect at different altitudes
 - Correction factor for medium-density terminal surveillance would also enable RNP-0.3 approach capability at affected airports
- Requirements for 9th pulse communications (station ID, integrity, etc.)
 - No augmentation assumed necessary to 9th pulse structure or format
eLoran Evaluation - Other Metrics

• Technical Maturity
 – Immature: No standards or avionics equipment available
 – MOPS could be developed in 2 to 3 years, equipment available ~two years after that (2011-2012)
 • Equipment only anticipated if user cost-benefit arises, current market not inclined to invest in new Loran receiver design

• Flexibility/Agility
 – USG to decide on continued operation (end CY06)
 – Provides ubiquitous coverage, provides tactical and strategic flexibility within CONUS
 • Provided stations are operational
 • More challenging in Alaska
 – Long-term viability related to other applications (e.g., timing)
 • If retained, multiple Agencies would be involved in system operation and could affect system performance
 • Some degree of performance dependent on Canadian stations

• International Compatibility
 – No international standards or ICAO acceptance, but
 • If FAA made decision to retain Loran and recommend it as international standard, may be able to adopt international standards due to other State’s interests
 • Coverage unlikely to expand beyond existing (US, Europe, Russia) due to initial infrastructure costs
Cost Implications, DME/DME/IRU

• DME coverage
 – Challenging in western US even to achieve 1.2 nm accuracy
 – Challenging at low altitudes even to achieve 0.6 nm
 – Achieving Final Program Requirement performance is not feasible

DENVER Coverage example
Cost Implications, eLoran

- Major recapitalization/modernization of ground system ($160M)
 - 18 U.S. CONUS stations, 6 in AK, 5 Canadian
 - Potential need to add one or more stations to enhance performance
 - Recent atmospheric modeling advances may mitigate this need
 - Canadian stations enhance NAS performance

- Life cycle (incremental) costs TBD

- Would require new avionics once standards are complete
 - Estimates vary significantly depending on integration issues
 - eLoran can be integrated within same unit as GPS
 - Feasibility of common GPS/Loran receiver demonstrated
 - Would affect cabling from antenna to receiver
<table>
<thead>
<tr>
<th>Metric</th>
<th>Steering Cmte Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational Capability & Coverage</td>
<td>0.3</td>
</tr>
<tr>
<td>Technical Maturity</td>
<td>0.25</td>
</tr>
<tr>
<td>Independence</td>
<td>0.11</td>
</tr>
<tr>
<td>Flexibility/Agility</td>
<td>0.16</td>
</tr>
<tr>
<td>Global Interoperability</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Scoring Has Just Begun …
Summary

• eLoran has major risks to overcome, under currently approved rules
 – ADS-B business case constraints
 – 50,000 potential “customers” (GA aircraft)
 – Lack of standards and avionics
 – “Rice bowl” mentality
 – Will industry buy in?

• From a purely technical perspective, eLoran can be a cost-beneficial backup