Loran C Additional Secondary Factors: Implications for Meeting Required Navigation Performance (RNP) 0.3—An Update
by
David Diggle, Ph.D., Avionics Engineering Center, Ohio University
Curt Cutright, Avionics Engineering Center, Ohio University
Linn Roth, Ph.D., FRIN, Locus, Inc.
Chad Schweitzer, Locus, Inc.
and
Mitchell J. Narins, Federal Aviation Administration

ILA-34 Conference and Technical Symposium
Santa Barbara, California
October 19, 2005
Overview

• Use of locally measured and/or calculated ASF values is key for Loran C to meet accuracy requirements of RNP (0.3)
• Ohio University has been collecting Loran C data at six east coast/mid west airports over the past two years
• Flights are conducted in early spring and late summer seeking to establish patterns for ASF values
• Goal is to verify if a single set of ASF values can serve an entire airport covering all runway approaches
Outline

• Loran-C Signal Propagation
• ASF Measurement System
• ASF* Derivation
• Required Navigation Performance
• Flight Test Results
• Summary and Conclusion
Loran C Signal Propagation

• “Primary” factor (PF) is signal delay through the atmosphere as compared to a vacuum
• “Secondary” factor (SF) is signal delay over seawater
• “Additional” secondary factor (ASF) accounts for additional delays over terrain due to ground conductivity (moisture/temperature dependent)
• ASFs contribute largest positional errors for Loran and their incorporation is essential for local accuracy
ASF Measurement System

• 2 SatMates (E and H-field)
• 12 channel GPS/WAAS
• Notebook PC with ASF software utility for rapid on-site ASF calculation
• Flashcard for easy data storage and transfer to the aircraft receiver
• UPS/ruggedized unit for field use
ASF* Derivation

• Collect ~ 1 hour Loran and GPS data at airport site
• ASF software utility generates local ASF* values
 • TOAs are measured using Loran C receiver clock locked to a composite frequency derived from all stations being tracked
 • Measured TOAs are differenced from TOAs calculated using GPS-derived position and the PF and SF yielding AFS*
 • ASF* contains UTC offset, receiver delays
 • Common receivers (ground/air) are used to account for the receiver delays
 • Loran C system is well managed and UTC offsets within the system remain reasonably constant over time
• Second utility reads ASF* values and burns flashcard
• Flashcard is used to initialize aircraft Loran C receiver
ASF System in Operation

- ASF Measurement System
- Tripod holds GPS, E-field and H-field Loran antennas
- Shown here in operation at Jacksonville, Florida
 - Craig Municipal Airport
Example ASF* File for an Airport

Typical ASF* values:
#ASF 8970M -0.906us [13500]
#ASF 8970X 0.429us [13498]
#ASF 8970Y 0.685us [13500]
#ASF 9960M 0.39us [13500]
#ASF 9960W 27.5us [8]
#ASF 9960Z -0.83us [13500]
#ASF 9960X 2.18us [13314]
#ASF 8970W 2.88us [13486]
#ASF 7980M -0.589us [13456]
#ASF 7980W -1.4us [13470]
#ASF 8970Z 0.118us [13468]
#ASF 7980Z -0.271us [13444]
#ASF 8290M 0.324us [13450]
#ASF 8290W 0.665us [13456]
#ASF 8290X 0.24us [13364]
#ASF 9610X 0.495us [12358]
#ASF 9610Y 0.523us [11932]
#ASF 9960Y 2.56us [13220]
#ASF 9610M -1.49us [13064]
#ASF 9610V -0.846us [13064]
#ASF 9610Z 0.261us [13064]
#ASF 7980X -0.544us [11690]
#ASF 7980Y 0.799us [6610]
Required Navigation Performance (RNP) 0.3
(From RTCA DO-236B)
Flight Tests From March 2004

Ongoing flight tests performed by Ohio University’s Avionics Engineering Center (AEC) using King Air, C-90SE twin turboprop
Flight Test Results from Four Locations

- Norwalk-Huron County Airport (5A1) Ohio
- Atlantic City International Airport (ACY)
- Portland International Jetport (PWM)
- Craig Municipal/Jacksonville Airport (CRG)
ASF* Values for 5A1

NORWALK-HURON COUNTY AIRPORT (5A1) OHIO (values in microseconds)

<table>
<thead>
<tr>
<th></th>
<th>8970</th>
<th></th>
<th>9960</th>
<th></th>
<th>7980</th>
<th></th>
<th>8290</th>
<th></th>
<th>9610</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Station</td>
<td>M</td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>M</td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>3/26/2004</td>
<td>-0.88</td>
<td>4.42</td>
<td>0.56</td>
<td>1.75</td>
<td>0.86</td>
<td>0.44</td>
<td>2.02</td>
<td>2.52</td>
<td>2.27</td>
<td>-0.60</td>
</tr>
<tr>
<td>4/5/2005</td>
<td>-0.84</td>
<td>4.41</td>
<td>0.59</td>
<td>1.84</td>
<td>0.82</td>
<td>0.45</td>
<td>1.93</td>
<td>2.49</td>
<td>2.31</td>
<td>-0.61</td>
</tr>
<tr>
<td>Mean</td>
<td>-0.86</td>
<td>4.42</td>
<td>0.58</td>
<td>1.80</td>
<td>0.84</td>
<td>0.44</td>
<td>1.98</td>
<td>2.51</td>
<td>2.29</td>
<td>-0.60</td>
</tr>
<tr>
<td>Sigma</td>
<td>0.026</td>
<td>0.007</td>
<td>0.023</td>
<td>0.064</td>
<td>0.027</td>
<td>0.005</td>
<td>0.064</td>
<td>0.021</td>
<td>0.028</td>
<td>0.007</td>
</tr>
<tr>
<td>8/20/2004</td>
<td>-0.93</td>
<td>4.27</td>
<td>0.651</td>
<td>1.72</td>
<td>0.89</td>
<td>0.478</td>
<td>2.7</td>
<td>2.29</td>
<td>-0.63</td>
<td>3.04</td>
</tr>
<tr>
<td>8/24/2005</td>
<td>-0.93</td>
<td>4.25</td>
<td>0.655</td>
<td>1.89</td>
<td>0.924</td>
<td>0.487</td>
<td>1.88</td>
<td>2.68</td>
<td>2.31</td>
<td>-0.65</td>
</tr>
<tr>
<td>Mean</td>
<td>-0.93</td>
<td>4.26</td>
<td>0.653</td>
<td>1.805</td>
<td>0.907</td>
<td>0.483</td>
<td>1.88</td>
<td>2.69</td>
<td>2.3</td>
<td>-0.64</td>
</tr>
<tr>
<td>Sigma</td>
<td>0.001</td>
<td>0.014</td>
<td>0.003</td>
<td>0.12</td>
<td>0.024</td>
<td>0.006</td>
<td>0.014</td>
<td>0.014</td>
<td>0.011</td>
<td>0.014</td>
</tr>
</tbody>
</table>
10 nmi Approach/10 nmi Departure--Runway 10/28 at 5A1--8/24/05
10 nmi Approach/10 nmi Departure--Runway 10/28 at 5A1--8/24/05

- **Along Track Error**
- **Cross Track Error**
- **Altitude/10**
ASF* Values for ACY

ATLANTIC CITY INTERNATIONAL AIRPORT (ACY) NEW JERSEY (values in microseconds)

<table>
<thead>
<tr>
<th>Chain</th>
<th>8970</th>
<th>9960</th>
<th>7980</th>
<th>8290</th>
<th>5930</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station</td>
<td>M</td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>3/26/2004</td>
<td>2.39</td>
<td>4.11</td>
<td>1.16</td>
<td>5.11</td>
<td>1.12</td>
</tr>
<tr>
<td>4/5/2005</td>
<td>2.41</td>
<td>1.27</td>
<td>5.28</td>
<td>1.19</td>
<td>2.48</td>
</tr>
<tr>
<td>Mean</td>
<td>2.40</td>
<td>1.22</td>
<td>5.20</td>
<td>1.16</td>
<td>2.45</td>
</tr>
<tr>
<td>Sigma</td>
<td>0.014</td>
<td>0.078</td>
<td>0.12</td>
<td>0.049</td>
<td>0.042</td>
</tr>
<tr>
<td>8/12/2004</td>
<td>2.51</td>
<td>4.21</td>
<td>1.51</td>
<td>5.19</td>
<td>1.20</td>
</tr>
<tr>
<td>8/23/2005</td>
<td>2.33</td>
<td>4.03</td>
<td>1.2</td>
<td>1.15</td>
<td>2.54</td>
</tr>
<tr>
<td>Mean</td>
<td>2.42</td>
<td>4.12</td>
<td>1.36</td>
<td>5.19</td>
<td>1.18</td>
</tr>
<tr>
<td>Sigma</td>
<td>0.127</td>
<td>0.127</td>
<td>0.219</td>
<td>0.035</td>
<td>0.042</td>
</tr>
</tbody>
</table>
LOCUS

5 nmi Approaches to Runway 13 at ACY

Feet
Along Track Error
Cross Track Error
Altitude/10
ASF* Values for PWM

<table>
<thead>
<tr>
<th>Chain</th>
<th>Station</th>
<th>8970</th>
<th>9960</th>
<th>7980</th>
<th>5930</th>
<th>9610</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>M</td>
</tr>
<tr>
<td>3/25/2004</td>
<td>3.39</td>
<td>1.89</td>
<td>1.60</td>
<td>0.67</td>
<td>1.62</td>
<td>0.46</td>
</tr>
<tr>
<td>4/25/2005</td>
<td>3.15</td>
<td>1.48</td>
<td>1.46</td>
<td>0.53</td>
<td>-1.83</td>
<td>1.21</td>
</tr>
<tr>
<td>Mean</td>
<td>3.27</td>
<td>1.89</td>
<td>1.54</td>
<td>0.67</td>
<td>1.54</td>
<td>0.49</td>
</tr>
<tr>
<td>Sigma</td>
<td>0.17</td>
<td>0.08</td>
<td>0.11</td>
<td>0.05</td>
<td>0.01</td>
<td>0.04</td>
</tr>
<tr>
<td>8/11/2004</td>
<td>3.20</td>
<td>-2.40</td>
<td>1.46</td>
<td>5.33</td>
<td>1.45</td>
<td>0.57</td>
</tr>
<tr>
<td>8/30/2005</td>
<td>3.22</td>
<td>1.46</td>
<td>1.44</td>
<td>0.59</td>
<td>-1.74</td>
<td>1.21</td>
</tr>
<tr>
<td>Mean</td>
<td>3.21</td>
<td>-2.40</td>
<td>1.46</td>
<td>5.33</td>
<td>1.45</td>
<td>0.58</td>
</tr>
<tr>
<td>Sigma</td>
<td>0.014</td>
<td>0</td>
<td>0.007</td>
<td>0.018</td>
<td>0.099</td>
<td>0.028</td>
</tr>
</tbody>
</table>
10 nmi Approach with Old ASFs to Runway 11 at PWM -- 8/30/05

21 nmi point
10 nmi Approach with Old ASFs to Runway 11 at PWM--8/30/05

Feet

Along Track Error
Cross Track Error
Altitude/10
10 nmi Departure on Runway 11 at PWM--8/30/05

- **Along Track Error**
- **Cross Track Error**
- **Altitude/10**

Feet
10 nmi Departure on Runway 11 at PWM--8/30/05

10 nmi point
10 nmi on Runway 11 at PWM--8/31/05

Along Track Error
Cross Track Error
Altitude/10
ASF* Values for CRG

Jacksonville/Craig Municipal Airport (CRG) Florida (values in microseconds)

<table>
<thead>
<tr>
<th>Chain</th>
<th>8970</th>
<th>9960</th>
<th>7980</th>
<th>9610</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station</td>
<td>M</td>
<td>W</td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>3/23/2004</td>
<td>2.93</td>
<td>1.07</td>
<td>3.66</td>
<td>5.59</td>
</tr>
<tr>
<td>4/27/2005</td>
<td>2.98</td>
<td>1.08</td>
<td>3.98</td>
<td>3.96</td>
</tr>
<tr>
<td>Mean</td>
<td>2.96</td>
<td>1.08</td>
<td>3.82</td>
<td>5.59</td>
</tr>
<tr>
<td>Sigma</td>
<td>0.035</td>
<td>0.007</td>
<td>0.226</td>
<td>0.028</td>
</tr>
<tr>
<td>8/20/2004</td>
<td>3.14</td>
<td>1.10</td>
<td>4.20</td>
<td>4.22</td>
</tr>
<tr>
<td>9/1/2005</td>
<td>3.06</td>
<td>1.09</td>
<td>4.06</td>
<td>4.10</td>
</tr>
<tr>
<td>Mean</td>
<td>3.10</td>
<td>1.10</td>
<td>4.13</td>
<td>4.16</td>
</tr>
<tr>
<td>Sigma</td>
<td>0.057</td>
<td>0.007</td>
<td>0.099</td>
<td>0.085</td>
</tr>
</tbody>
</table>
5-nmi Approaches to Runway 32 at CRG--9/1/05

- Along Track Error
- Cross Track Error
- Altitude/10

Feet

- 800
- 600
- 400
- 200
- 0
- -200
- -400
- -600

Summary

- Locally generated ASF* measurements demonstrate year-to-year (temporal) consistency but trials to date are limited.
- Flight measurements demonstrate that cross-track error is well behaved for stabilized approach procedures typical of those published by FAA for non-precision approach.
- Numerous flight tests (these and others previously reported) have demonstrated RNP 0.3 performance over a wide area surrounding the point where ASF* values were generated.
 - with ASF corrections derived the same day
 - with ASF corrections several months old
Conclusions

• It appears that a single set of ASF* values per airport will be sufficient to meet RNP 0.3 accuracy requirements for all runway ends.
• Twice annual updates may be needed for some airports where all-in-view geometry is limited.
• Airports surveyed to date are representative of those east of the Rocky Mountains. The inter-mountain and west coast areas need to be studied since ASF gradients can be steep.
• With new TFE equipment in place and a move to time-of-transmission control, ASFs should prove to be more stable than at present thus yielding even greater Loran C accuracy.