

FAA Tests E- and H-field Antennas to Characterize Improved Loran-C Availability During P-Static Events

Dr. Robert Lilley

Aviation Management Associates

Robert Erikson W. J. Hughes FAA Technical Center

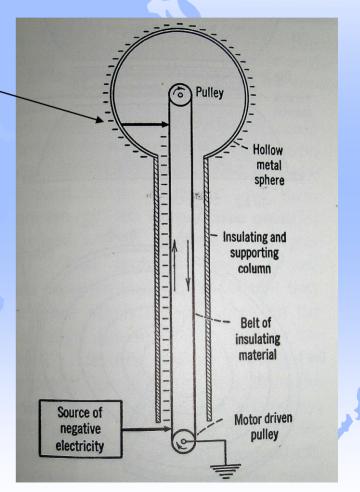
International Loran Association

33rd Annual Convention and Technical Symposium

Tokyo, Japan October 27, 2004

What is p-static?

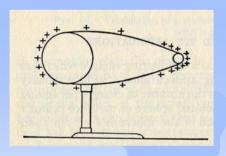
- Electrical noise generated in flight
 - Flight in charged regions
 - Triboelectric charging (impact ionization)
 - Engine charging
- Aircraft is an isolated conductor
 - Stored charge increases with time, up to threshold
 - Van de Graaff generator is similar

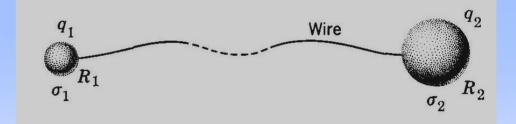

Van de Graaff?

•Stored charge increases

- E-field accelerates nearby ions
- Ions impact neutral atoms,
- Secondary ionization occurs,
- Ion avalanche, critical mass,
- Air becomes a conductor,
- Breakdown spark discharge

(Why use a sphere – a *big* sphere?)




The Electric Field

Size Matters

- Stored charge on conductor
 - Arranges so that electrical <u>potential</u> is equal everywhere
 - Charge density is inversely proportional to radius
 - (Breakdown occurs at sharp points)

(So, a van de Graaf generator with a *really big sphere* avoids discharge even with high stored charge ⇒ high electric field.)

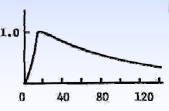
• But a *big sphere* just does not fly very well. Real airplanes have pointy parts.

Discharge Mechanisms

- Arcs
 - Equalizing potential among airframe elements
 - Maintenance bonding, loose rivets, bad antenna mount, corrosion
- Streamers
 - Draining stored charge from dielectric surfaces
 - Maintenance resistive coatings, windscreen glue bypass
- Corona
 - Equalizing airframe and atmosphere
 - Maintenance dischargers burnt, broken; antenna coatings pinholed, sharp points uncoated.

So, it's maintenance, maintenance, maintenance, huh? (Wait for it; there's good news ahead!)

Corona Discharge

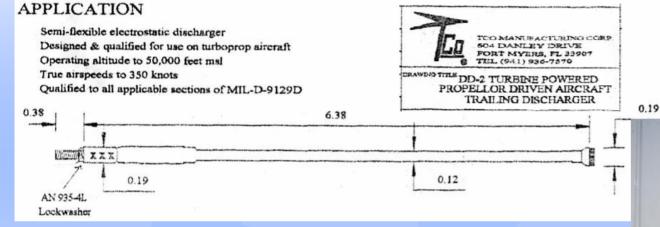


Arcs, Streamers can be silenced

- Maintenance is the key, but not unique to radio
- Good structural maintenance will generally suffice

Corona <u>will</u> occur with stored charge

- Can couple closely to the airframe
- Can be frequency selective quantized ion avalanches
 - Increasing current: clicks \rightarrow bacon \rightarrow violins \rightarrow screaming
- Can be controlled and "quieted"



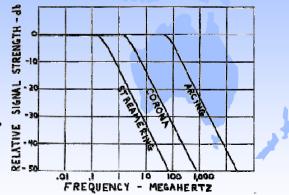
Corona Dischargers

Really Small Radius!

- TCO DD-2 discharger
- Goal is low noise, efficient discharge at low corona threshold
- Resistive; forms filter with a/c capacitance
- (4µ wires)

©TCO, Inc.; used with permission

•ASA-3 discharger
•Same goal, different design
•Resistive wicks



How to Reduce Noise

Implications, Hypotheses...

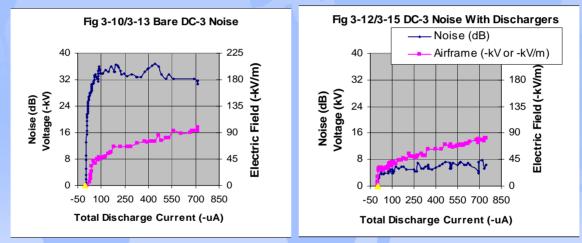
- Stored charge can produce noise over the entire aviation spectrum.
 - Keep airframe parts at equal potential; low re: the surroundings.
 - Antennas *themselves* must not become corona discharge points
 - Some corona noise is inevitable
- Install discharger devices at trailing edge extremities and discontinuities
 - Small-radius corona points
 - Enough to carry current to maintain airframe potential at the low value
 - Resistive, to decouple discharges from airframe
- Maintain the airframe and dischargers, to preserve
- the electrically-quiet environment.
- *Then* for use in instrument conditions, install a Loran-C h-field antenna for even more protection.
- All three discharge mechanisms are factors, and not just for Loran-C!

Airplanes!

Prior art:

- Ohio University Avionics Engineering Center
 - 1981-82 Douglas DC-3
 - 2000 Piper Saratoga
 - 2000 Beech Bonanza (J. Edwards; ILA-29, 2000)
- Ground Electrostatic Surveys
 - Technique similar to the 2004 FAA tests
- DC-3 Flight Tests
 - p-static measurements agreed with ground test
 - Onboard artificial charging

DC-3 N7AP Gallery ... Flying History

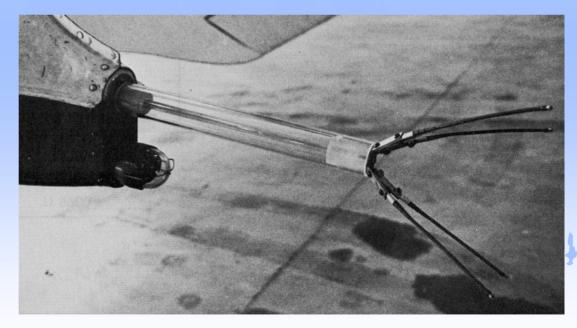


DC-3 Test Results

• Ground Electrostatic Survey, 1982

- Shows the ~29 dB quieting obtained with dischargers installed, compared to bare airplane.
- Noise receiver, operating in the Loan-C band.

DC-3 Flight Tests



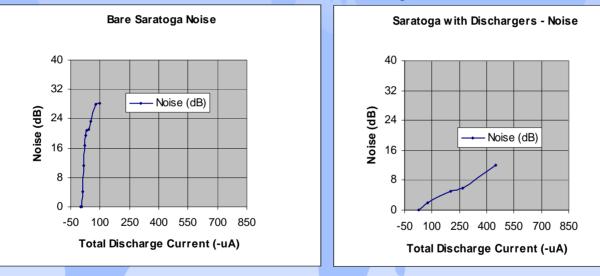
• Flight Tests in 1982, in weather

- Difficult to find p-static when desired
- Results agreed with ground survey data

Active charging

Onboard
high-voltage
power supply
and tail boom

Ground Electrostatic Survey



Saratoga Test Results Airframe Noise

• Ground Electrostatic Survey, 1999

- Shows the ~25 dB quieting obtained with dischargers installed, compared to bare airplane.
- No field mill was available for this test.

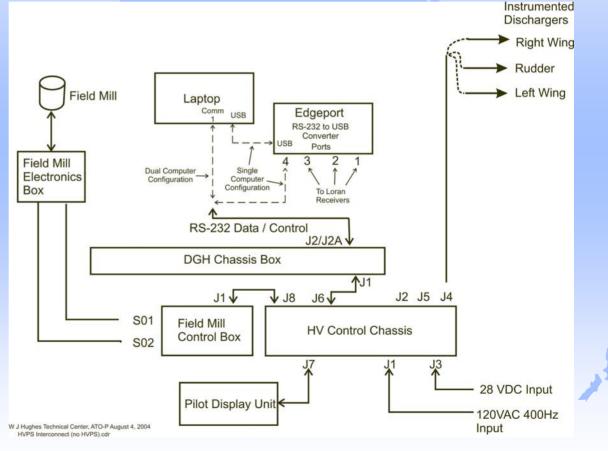
Saratoga Test Results Loran-C SNR: e-field vs h-field

Megapulse Loop Antenna & Rcvr, and II Morrow Whip Antenna on 612A Receiver Inputs M loop "Bare" 300 airplane: brass Y loop rods replace Z loop 250 (+4) 200 (-1) 150 (-5 dischargers Marker M whip No decoupling ٠ Y whip from corona, 150 (-5) Z whip large radius compared to -oran-C 100 dischargers (-9) 50 (-16) Legacy receivers – 0 15.8kV, 5.7uA 17.7kV, 10UA ^{22.3kV, 25.2uA} ^{23.4kV, 30.1uA} ^{25.}9 kV, 40.5uA ^{19.6k V, 16uA} 20.5k V, 20uA ^{27.}9kV, 50.5uA ^{32.3kV, 76.5ud} 35.7kV, 100.1uA 11kV, 1uA ov, oud **II-Morrow ApolloTM 612** E-field receiver stopped SNR characteristic nav data at 27.9 kV / 50.5 uA nonlinear below 85 A/C Flood Potential / Discharge Current H-field remained operating.

FAA Technical Center

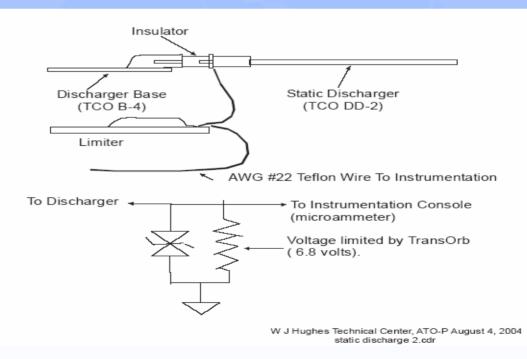
Ground Confirmation, Extension to Flight

- Preparations for March 2004 Tests
 - Modifications to N-50, Aero Commander 680
 - Ground Equipment Configuration
 - Calibration, Coordination with FAATC support



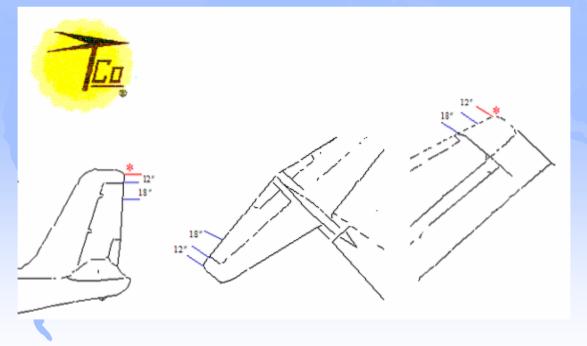
A/C Instrumentation Field Mill

• Field Mill added, to monitor airframe electric field / potential



A/C Instrumented Discharger Bases

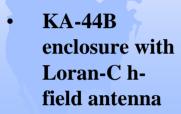
- Bases at wingtips and tail tip
- Sample and record total a/c current
- (These dischargers expected to conduct first.)
- Equipped with
 - TCO DD-2 dischargers for the "optimized a/c" test
 - 1/8" brass rods for the "bare a/c" test

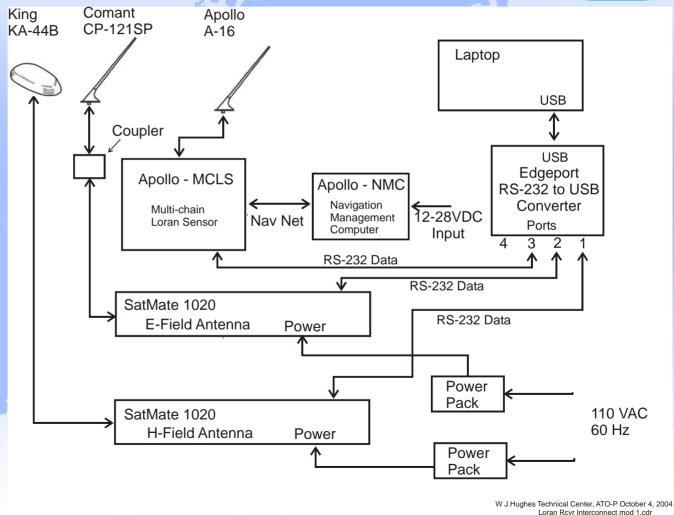


A/C Instrumented Discharger Bases

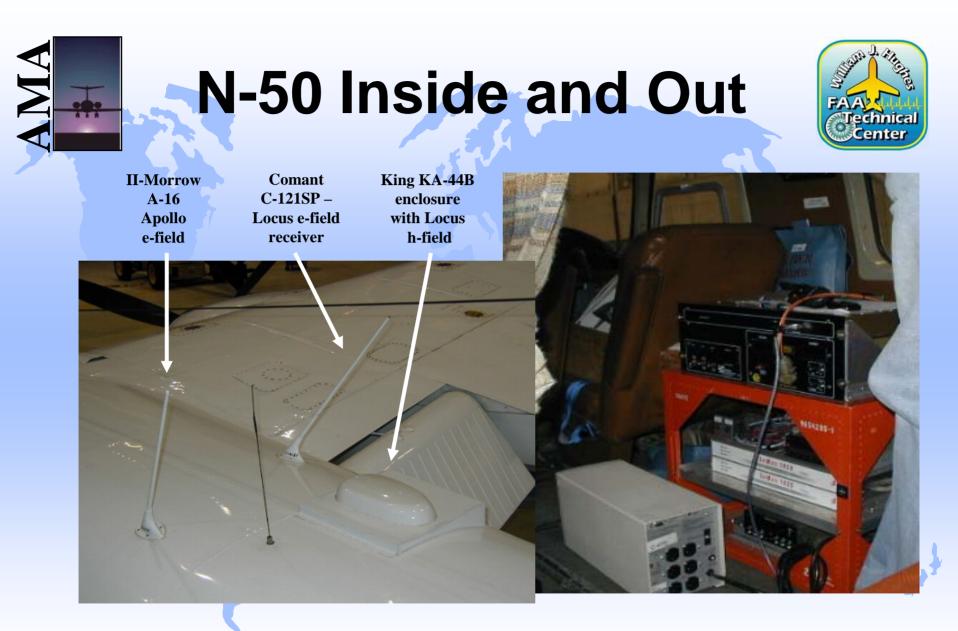
- The "optimized" aircraft plan, from TCO Mfg.
 - Includes instrumented dischargers (*)

Dischargers "Optimized" Rudder and "Bare" Elevator


Instrumented • dischargers at tips



...and Loran Receivers



- Locus SatMate
 1020 e- and h field
- Apollo 2010
 "legacy"

Aviation Management Associates, Inc. WJ Hughes FAA Technical Center Page 21

Ground Test Equipment

Loran-C Simulator

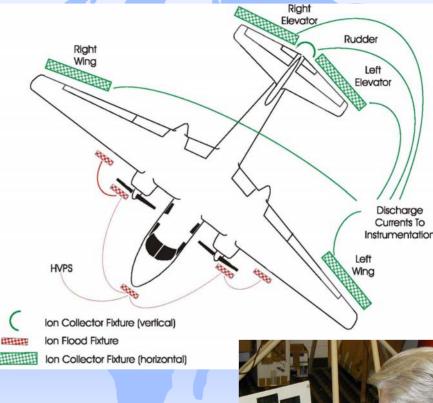
•Simulates 9940 chain to avoid interference form on-air signals.

•Calibration and tests confirm realistic signals radiated in the near field

Isolate, and Purge

- Isolate the aircraft from ground to avoid unmeasured currents
- Purge the fuel system with nitrogen for safety.

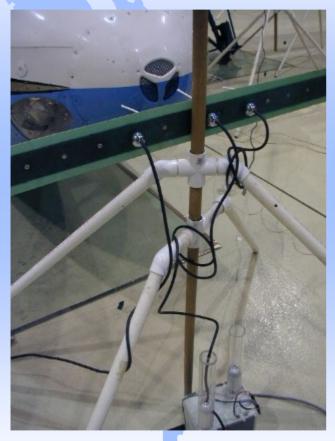
Field Mill Calibration Electric Field, and Potential



- Aircraft grounded
- High-voltage applied to plate 10 cm from field mill face
- Field in V/m is 10 times applied voltage

Ion Floods and Collectors

- High-voltage deposits ions on leading edges through "reversed" dischargers
- Airframe stores charge
- Discharges from trailing edges collected for measurement using resistive collectors
- Flood and collection currents all monitored, recorded


Date 11/19/2004

Aviation Management Associates, Inc. WJ Hughes FAA Technical Center

Page 26

Ion Flood Wing, Nose and Props are Impacted

MA

Ion Collection

- General view of the resistive (low-noise) collectors at the rear of the aircraft.
- Collectors are placed behind wing and elevator tips, and along vertical stabilizer (almost two stories high!)

Ready to Test

N50 on jacks, isolated...

Test
 Director
 Robert
 Erikson
 briefs the
 fire and
 EMT crew

Candid Shots

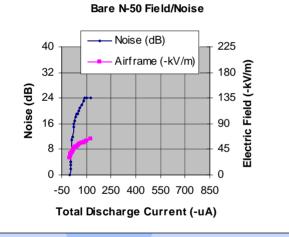
• He's going to do *what*?

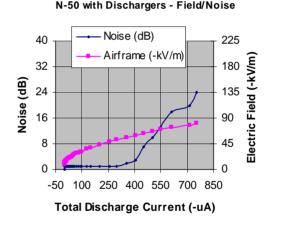
• Everybody be ready; we may have to grab him...

...where they needed me...

- First step is a preliminary high-voltage test to detect and correct any arcs or streamers.
- During tests, continue to listen for arcs / streamers, and detect any corona from non-discharger locations.

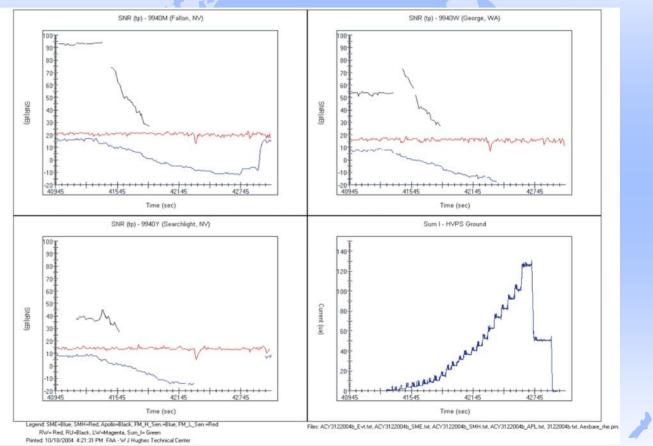
Test configurations


- "Bare" aircraft large-radius trailing edge rods
 - Simulates a/c with missing or broken dischargers; should observe high stored charge and relatively low discharge current (high corona threshold).
- "Optimized" aircraft purpose-built dischargers at optimum locations
 - Dischargers should keep the a/c/ stored charge lower, by liberating more current at lower field strength



N-50 Test Results

Ground Electrostatic Survey, 2004



- Shows the ~23 dB quieting obtained with "optimized" dischargers installed, compared to "bare" airplane.
- Field mill was operating during this test.

N-50 Test Results Loran-C SNR: e-field vs h-field

- "Bare" aircraft
- P-static effect (blue) on SatMate with e-field antenna
- No significant effect (red) on Satmate with hfield antenna
- Apollo e-field receiver lost track
- Compares with Saratoga 1999 results

Ground Test Summary

Three different airplanes

- Different times, different places
- Noise comparison at -100 uA discharge current

Noise @ 100 µA	DC-3	Saratoga	N50	
Bare aircraft	33.9 dB	28.1 dB	24.0 dB	
With dischargers	4.5 dB	2.6 dB	1.0 dB	
Difference	29.4dB	25.5 dB	23.0 dB	

Some test procedures may be lost with the passage of time and place.

Further work is planned to understand the differences here.

- Similar enough to suggest that total current a predictor of noise increase
- Could we move toward a general rule, not installation-specific?

Maintenance does make a difference!

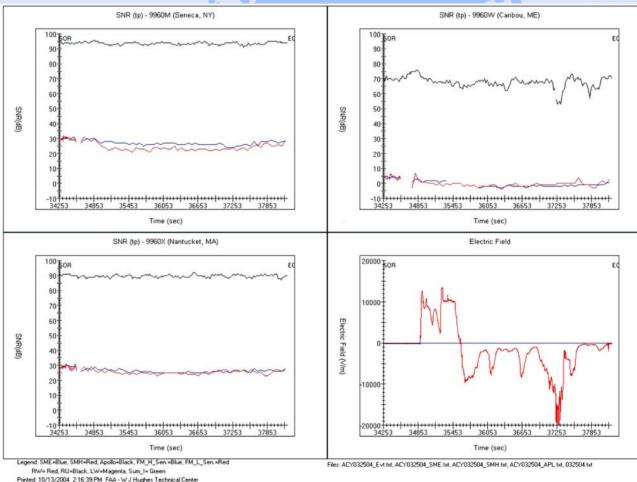
FAAL Center

N-50 Flight Testing

Natural Charging in Weather

- The search for p-static conditions:
 - March 25, 2004
 - Small amount of charge/discharge activity
 - Agrees well with "optimized a/c" ground data
 - No receiver effects observed
 - August 16, 2004
 - Encountered charged environment
 - Selective discharger activity
 - Legacy and modern e-field Loran receivers affected

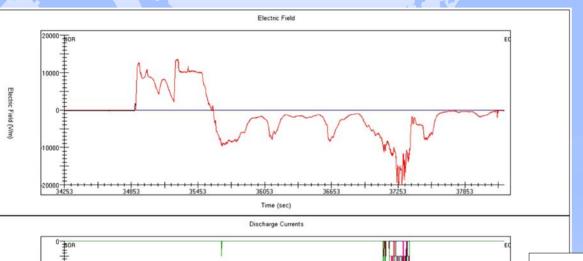
N-50 Flight 3/25/04 (a)



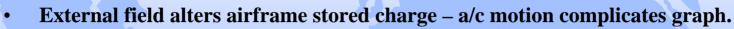
Loran-C effects

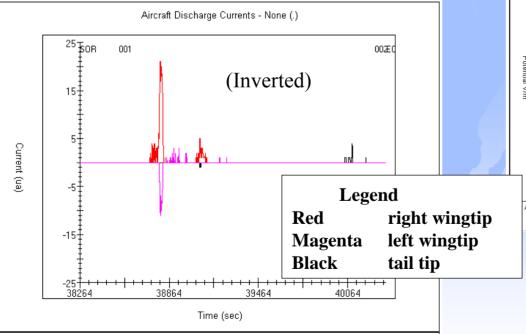
DD-2 dischargers at wingtips and tail tip

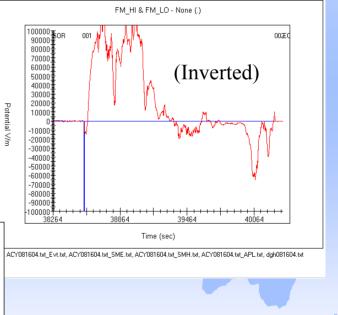
 Only 10 ua discharge current


 3-dB SNR loss noted on Apollo e-field receiver

N-50 Flight 3/25/04 (b) Corona threshold; agreement with ground

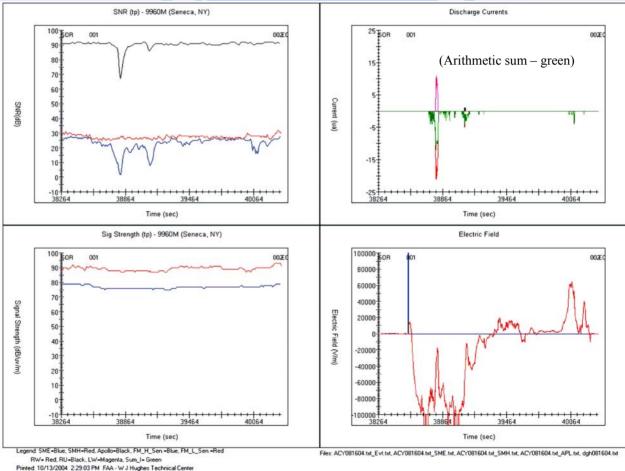

FAA Center


- 9.5 kV/m corona threshold observed
- Individual dischargers plus absolute-value sum shown
- Low currents; agree with ground "optimized" data; few dischargers conducting



N-50 Flight 8/16/04 We encounter external fields

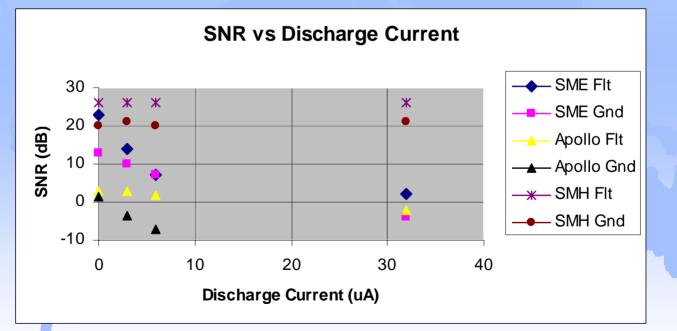
- Selective discharge from instrumented brass rod "dischargers" "bare" airplane
- Field mill output less useful quantitatively
- Discharge current predicts Loran-C effects



N-50 Flight 8/16/04

Loran-C effect predicted by corona current

- Positive and negative corona*
- Constant Loran-C signal strength
- Only e-field receivers affected
- *More analysis later for Loran-C effect – positive corona should be more energetic than negative corona



Flight vs. Ground

- SatMate e-field SME
- SatMate h-field SMH
- Legacy e-field Apollo

Maintenance is good, and the h-field antenna gives even more performance margin!

Conclusions (a) Electricity

- FAATC ground survey and flight tests to date confirm and replicate previous work.
 - The survey data also agree broadly with many uncontrolled or anecdotal observations of p-static interference reported by pilots and others.
- Three different instrumented aircraft show consistency in p-static noise vs. total discharger current
 - (Toward a general standard rather than installation-specific approvals?)
- We can "quiet" the airframe greater than 20 dB using careful maintenance and purpose-built dischargers.
 - (E-field antennas can work well in these quieted circumstances. Careful airframe and discharger maintenance required.)

P-static is not a lurking demon – it's just noise!

Conclusions (b) Loran-C

- Loran-C receivers using e-field antennas see >20 dB SNR reduction in mid-severity charging scenarios.
 - The h-field antenna offers another >20 dB performance margin against a maintenance-related rise in p-static noise over time.
- Modern receiver using h-field antenna shows greater than 20 dB more "immunity" to p-static than the same receiver using an e-field antenna.
 - Even at levels of charge/discharge considered "severe" in practice, there was little or no reduction in SNR from receivers with h-field antennas.
- A retrofit h-field antenna is desirable.
 - Legacy e-field receiver was affected at lower p-static levels than the "modern-design" e-field receiver.
 - Legacy receiver with an h-field antenna performed normally in midseverity p-static conditions.

Do both! Maintain the airplane for safe IFR operation; then add Loran-C plus an h-field antenna for peace of mind!

The Future

- "P-static on demand" is needed to resolve finally the questions:
 - Does use of Loran-C in aviation require extraordinary airframe maintenance?
 - Are unique approval processes required? (must every *installation* be inspected?)
 - Is specialized equipment required? (e.g. h-field antennas)
- Continue / complete data analysis of the FAATC electrostatic survey
- Continue and complete the FAATC flight testing program
 - Natural charging flights can confirm the previous ground tests
 - Determine if ground tests suffice for certification/approval of antennas/receivers
- Bring the knowledge down to Earth.
 - Establish high-voltage laboratory for test and approval
 - Support Loran-C certification/commissioning path development
 - Benefits non-aviation Loran-C users, users of other systems.

Kudos

LORAN P-STA	TIC	318104		
NAME	ORG	New B.		
SCOTT SHOLLEN BERGER	HC8-440			
Andrei Ranijatten Martin Fitzgerald	ACB - 440 ACB - 440	6		100
BILL WILT Curtis Cutright	ACB-870 Ohio Universi	ALA		
Robert Livey Robert L. Truax	NOFTHFOP GEU TCO MS& CON	- VY		
ARMANDO GAETANO KEITH BIEHL	ACB-870 ACB-870			
Find Hogan	ACB-870 ANB 870	4		
Robert EILIKSON	ACB . 440			•
BRIANGARAMAN (SILL SHARRAS)	Rex-42	He was a straight was a straight was	1 1	7 7